MA3403-2. Probabilidades y estadística

Profesor: Raúl Gouet.

Auxiliares: Vicente Salinas y Javier Castro.

Fecha: 9 de Abril del 2020

Auxiliar 2

- **P1** Un conjunto $A \subseteq \mathbb{N}$ se dice egocéntrico si $|A| \in A$. Por ejemplo, el conjunto $\{2,7\}$ es egocéntrico, mientras que el conjunto $\{1,3\}$ no lo es.
 - a) Dado $k \in \mathbb{N}$. Calcule el número de conjuntos egocéntricos $A \subseteq \{1,..,n\}$ de cardinal $k \leq n$.
 - b) Muestre que el cardinal del conjunto de egocéntricos $A \subseteq \{1,..,n\}$ es 2^{n-1} .
- ${f P2}$ Un grupo de 15 mujeres y 5 hombres se deben separar en dos grupos: 10 personas para el proyecto principal A y 10 para el proyecto secundario B. Además a cada proyecto debe asignar un jefe o jefa de proyecto de entre sus miembros.
 - a) ¿De cuantas maneras se puede asignar a las personas a los proyectos y sus jefaturas?
 - b) Si todas las asignaciones son igualmente probables, Calcule la probabilidad de que el proyecto principal no incluya hombres?
 - c) Calcule la probabilidad de que las dos jefaturas sean ocupadas por mujeres (**Hint**: Fije primero las jefaturas de cada proyecto).
- **P3** Sea $I_n = \{1, ..., n\}$. Se saca un conjunto A del conjunto de partes $\mathcal{P}(I_n)$ de manera equiprobable.
 - a) Calcule $\mathbb{P}(\{A\})$
 - b) Sean n = 4, $A = \{1, 2\}$ y $B = \{3, 4\}$, sea $C = A \cup B = \{1, 2, 3, 4\}$, es cierto que: $\mathbb{P}(\{A\}) + \mathbb{P}(\{B\}) = \mathbb{P}(\{C\})$, se contradice alguna propiedad?

Resumen

 $\mathcal{P}(\Omega) \to \mathbb{R}$ que cumple lo siguiente:

- 1. $0 \le \mathbb{P}(A) \le 1$.
- 2. $\mathbb{P}(\Omega) = 1$.
- 3. Si $(A_n)_n$ son eventos tales que $\forall i \neq j, A_i \cap A_j = \emptyset$,

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mathbb{P}(A_i).$$

Proposición 1. 1. Sea A un evento cualquiera, entonces $\mathbb{P}(A^c) = 1 - \mathbb{P}(A).$

- $2. \mathbb{P}(\varnothing) = 0.$
- 3. Sean A, B eventos cualesquiera, entonces $\mathbb{P}(A \cup B) =$ $\mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B).$
- 4. Si $A \subseteq B \Rightarrow \mathbb{P}(A) \leq \mathbb{P}(B)$.

Definición 2. Supongamos que $|\Omega| < +\infty$. Diremos que Ω es equiprobable cuando

$$(\forall w \in \Omega) \mathbb{P}(\{w\}) = \frac{1}{|\Omega|}.$$

Además se cumple que: $(\forall A \subseteq \Omega)\mathbb{P}(A) = \frac{|A|}{|\Omega|}$

Definición 1. Una probabilidad \mathbb{P} es una función \mathbb{P} : Proposición 2 (Principio Aditivo de Conteo). Sean E_1, E_2 dos experimentos disjuntos con $|E_1| = n$ y $|E_2| = m$. Entonces el numero de formas de realizar alguno de los dos experimentos viene dado por n + m.

> Proposición 3 (Principio Multiplicativo de Conteo). Sean E_1, E_2 dos experimentos disjuntos con $|E_1| = n$ y $|E_2| = m$. Entonces el numero de formas de realizar el primer experimento y luego el segundo experimento viene dada por $n \cdot m$.

> **Proposición 4.** Sean $a_1, ..., a_n$ n objetos diferentes. Entonces la cantidad de formas de elegir k objetos de los n anteriores viene dada por:

	Con Orden	Sin Orden
Con Reposición	n^k	$\binom{k+n-1}{n-1}$
Sin Reposición	$\frac{n!}{(n-k)!}$	$\binom{n}{k}$

Proposición 5. Suponga tenemos n objetos tales que hay n_1 objetos de tipo 1 indistinguibles entre si, n_2 objetos de tipo 2 indistinguibles entre $si,..., n_k$ objetos de tipo k indistinquibles entre si. Entonces la cantidad de permutaciones de los n objetos viene dada por:

$$\frac{n!}{n_1! \cdot n_2! \cdot \dots \cdot n_k!}$$

[Propuesto]

- **Prop 1** Sea $A \subseteq \Omega$ un evento tal que $\mathbb{P}(A) = 1$. Pruebe que para cualquier otro evento $B \subseteq \Omega$, se tiene que $\mathbb{P}(A \cap B) = \mathbb{P}(B)$.
- **Prop 2** Se lanzan cuatro dados distinguibles y equilibrados. Calcule la probabilidad de obtener:
 - a) 4 números iguales.
 - b) 3 números iguales y uno distinto.
 - c) 2 números iguales y los otros dos distintos (con la pareja y entre sí).
 - d) 2 parejas distintas.
 - e) 4 números distintos.
- Prop 3 Una torre es una pieza de ajedrez que puede atacar a piezas en su misma fila o columna. Dos torres son indistinguibles si no puedo diferenciar a qué lado del tablero atacan, por lo tanto, es posible que se ataquen entre si.
 - a) Sea $k \in \mathbb{N}$; De cuántas maneras se pueden ubicar k torres indistinguibles en un tablero rectangular de $k \times k$ casilleros de modo tal que ninguna torre pueda atacar a otra?
 - b) Sean $k,n \in \mathbb{N}$ ¿De cuántas maneras se pueden ubicar k torres indistinguibles en un tablero rectangular de $n \times n$ casilleros de manera tal que ninguna torre pueda atacar a otra?
 - c) Sean $k, n, m \in \mathbb{N}$ ¿De cuántas maneras se pueden ubicar k torres indistinguibles en un tablero de $n \times m$ casilleros de manera tal que ninguna torre pueda atacar a otra?