

Auxiliar 7

Reintroducción a los complejos

Profesor: Jaime Ortega

Auxiliares: Ignacio Fierro, Ignacio Riego Ayudantes: Amal Zhgeib, Gustavo Muñoz, Vicente Salinas

P1

a) Sean $z_1, ... z_n$ raíces n-ésimas de la unidad. Pruebe que

$$z_0 \cdot z_1 + z_1 \cdot z_2 + \dots + z_n \cdot z_0 = 0$$

b) Sea $w \in \mathbb{C}$ raiz cúbica de la unidad distinta de 1. Pruebe que

$$(1+w)^{2016} + (1+w^2)^{405} + (1+w^3)^5 = 32$$

Indicación: Pruebe que la suma de las raíces cúbicas de la unidad es 0.

P2

Pruebe que si f(z) y \bar{f} son funciones holomorfas en \mathbb{C} , entonces f es constante.

P3

Definimos la función $f: \mathbb{C} \to \mathbb{C}$ como

$$f(z) = |z - a|$$

Con $a \in \mathbb{R}$ estudie dónde en \mathbb{C} f es derivable en el sentido complejo.

P4

Recordamos que un número complejo z = x + yi puede verse como un punto en el plano (x, y).

Auxiliar 7

a) Sea $z \in \mathbb{C}$ encuentre una transformación lineal $A_z : \mathbb{R}^2 \to \mathbb{R}^2$ tal que multiplicar por z sea equivalente a aplicar A_z , en otras palabras

$$\forall w \in \mathbb{C}, w = x + yi, \qquad A_z(x, y) = (l, k) \Leftrightarrow zw = l + ki$$

- b) Sea una función $f: \mathbb{R}^2 \to \mathbb{R}^2$. Encuentre una condición sobre el jacobiano de f para que $J_f(x,y) = A_z$ para algún $z \in \mathbb{C}$.
- c) Comente la relación entre esto y las condiciones de Cauchy-Riemman

Auxiliar 7