Introducción al Álgebra MA1101

Auxiliar 15 "Nice While It Lasted": Raíces y Factorización.

- **P1.** Calcular los valores de $a, b \in \mathbb{R}$ para que el polinomio $P(x) = ax^4 + bx^3 + 1$ sea divisible por $q(x) = x^2 + 2x + 1$.
- **P2.** Sea P(x) un polinomio que tiene resto A cuando se lo divide por (x-a) y tiene resto B cuando se lo divide por (x-b). Encuentre el resto R(x) cuando el polinomio es dividido por (x-a)(x-b). Suponga que $a \neq b$.
- **P3.** Sea $P(x) = x^3 + ax^2 + bx + c$ un polinomio con coeficientes reales. Sea R(x) tal que

$$P(x) = (x - 1)Q(x) + R(x).$$

Si R(4) = 0 y x = i es raíz de P(x), calcule a, b, c.

- **P4.** Sabiendo que la ecuación $z^3 9z^2 + 33z = 65$ admite una solución en $\mathbb{C} \setminus \mathbb{R}$ de módulo $\sqrt{13}$, determina todas las raíces de la ecuación.
- **P5.** Si $n=3k\pm 1$, para algún $k\in\mathbb{N}$, probar que $x^{2n}+1+(x+1)^{2n}$ es divisible por x^2+x+1 .