Introducción al Álgebra MA1101

Auxiliar 10: Conjuntos Infinitos y Estructuras Algebraicas

- **P1.** Demuestre que si X es infinito y $x_0 \in X$ entonces $|X| = |X \setminus \{x_0\}|$.
- **P2.** Sean A, B, C tres conjuntos infinitos tales que:

$$A \cap B = \emptyset, A \cap C = \emptyset \text{ y } |B| = |C|.$$

- (a) ¿Qué relación hay entre $|A \cup B|$ y $|A \cup C|$?
- (b) X si $A \cap B = \{x_0\}$?
- (c) ¿Y qué se puede decir si $|B| \leq |C|$?

En todos los casos, demuestra tus afirmaciones.

P3. Para todo $n \in \mathbb{N}$ se tiene una función $f_n : \mathbb{R} \to \mathbb{R}$ y $f_0 = id_{\mathbb{R}}$. Sea $A \subset \mathbb{R}$ y definimos

$$B = \{ f_n(a) \mid n \in \mathbb{N}, a \in A \}.$$

Demuestre que si A es un conjunto numerable entonces B también es numerable.

- **P4.** Sea $\mathcal{G} = \{x \in \mathbb{R} : x > 1\}$ Para cada $x, y \in \mathcal{G}$, se define * por: x * y = xy x y + 2. Pruebe que $(\mathcal{G}, *)$ es un grupo abeliano, es decir:
 - a) * es una ley de composición interna
 - b) * es asociativa
 - c) existe el neutro para *
 - d) existe el elemento inverso para cada $x \in \mathcal{G}$
 - e) * es conmutativa
- **P5.** Sea (S,*) una estructura algebraica con neutro e y * asociativa. Para $a \in S$ fijo, invertible para * y con inverso $a^{-1} \in S$ se define la operación \triangle en S como sigue:

$$x, y \in S$$
, $x \triangle y = x * a * y$.

- (a) Demuestre que la ley \triangle es asociativa, tiene neutro y encuéntrelo.
- (b) Caracterice los elementos invertibles para \triangle y calcule el inverso de a para \triangle .