

Clase Auxiliar 9: Coeficientes Binomiales, Cardinalidad Finita e Infinita

P1. a) Demuestre sin usar inducción que

$$\frac{1\binom{n}{1}}{\binom{n}{0}} + \frac{2\binom{n}{2}}{\binom{n}{1}} + \dots + \frac{n\binom{n}{n}}{\binom{n}{n-1}} = \binom{n+1}{2}.$$

Hint: Escriba la expresión de la izquierda como una sumatoria y calcúlela usando propiedades de $\binom{n}{k}$.

b) Calcule

$$\sum_{k=0}^{n} \frac{(-1)^k}{(k+1)(k+2)} \binom{n}{k}.$$

- **P2.** a) Sean $A_1, ..., A_n$ conjuntos finitos. Demuestre que $\left| \bigcup_{i=1}^n A_i \right| = \sum_{i=1}^n |A_i|$ si y sólo si para todo $i, j \in \{1, ..., n\}$, $i \neq j, A_i \cap A_j = \emptyset$.
 - b) Sea \mathcal{C} una partición de un conjunto finito A de modo que para todo $X,Y\in\mathcal{C},\,|X|=|Y|.$ Demuestre que $|\mathcal{C}|$ divide a |A|.

P3. Sea $m \in \mathbb{N}$, $m \ge 1$ Demuestre que

a)
$$|\{2i+1: i\in \mathbb{N}, n\in \{1,...,m\}, 0\leq i< 2^{n-1}\}|=2^{m-1}.$$

b)
$$\left| \left\{ \frac{2i+1}{2^n} : i \in \mathbb{N}, n \in \{1, ..., m\}, 0 \le i < 2^{n-1} \right\} \right| = 2^m - 1.$$

P4. Demuestre que el siguiente conjunto es numerable:

$$C = \{x > 0 \mid \exists n \in \mathbb{N} \setminus \{0\}, x^n \in \mathbb{N}\}.$$