Auxiliar 6: Estrategias mixtas y juegos bayesianos IN701 Microeconomía I

Leonel Huerta

7 de mayo de 2020

Contenido

P1. Un juego sencillo

2 P2. Licitaciones con valoraciones conocidas

3 P3. Licitaciones con valoraciones privadas

Contenido

P1. Un juego sencillo

2 P2. Licitaciones con valoraciones conocidas

3 P3. Licitaciones con valoraciones privadas

		J2	
		L	R
J1	U	5,2	1,0
	D	2,1	3,3
			-,-

Método 1: Busquemos funciones de mejores respuestas e intersectemos.

Método 1: Busquemos funciones de mejores respuestas e intersectemos.

Digamos que 1 juega la estrategia mixta $\sigma_1=(p,1-p)$ y 2 juega la estrategia $\sigma_2=(q,1-q)$.

Método 1: Busquemos funciones de mejores respuestas e intersectemos.

Digamos que 1 juega la estrategia mixta $\sigma_1=(p,1-p)$ y 2 juega la estrategia $\sigma_2=(q,1-q)$.

• Escribamos el pago esperado de 1:

$$u_1(\sigma_1, \sigma_2) = p(5q + (1-q)) + (1-p)(2q + 3(1-q))$$

= $p(5q - 2) + (3-q)$

Método 1: Busquemos funciones de mejores respuestas e intersectemos.

Digamos que 1 juega la estrategia mixta $\sigma_1=(p,1-p)$ y 2 juega la estrategia $\sigma_2=(q,1-q)$.

• Escribamos el pago esperado de 1:

$$u_1(\sigma_1, \sigma_2) = p(5q + (1-q)) + (1-p)(2q + 3(1-q))$$

= $p(5q - 2) + (3-q)$

• Y entonces, la mejor respuesta de 1 debe entregar el valor de p tal que:

$$\max_{p>0} p(5q-2) + (3-q)$$

Método 1: Busquemos funciones de mejores respuestas e intersectemos.

Digamos que 1 juega la estrategia mixta $\sigma_1=(p,1-p)$ y 2 juega la estrategia $\sigma_2=(q,1-q)$.

• Escribamos el pago esperado de 1:

$$u_1(\sigma_1, \sigma_2) = p(5q + (1-q)) + (1-p)(2q + 3(1-q))$$

= $p(5q - 2) + (3-q)$

• Y entonces, la mejor respuesta de 1 debe entregar el valor de p tal que:

$$\max_{p>0} p(5q-2) + (3-q)$$

Notemos que esta función es lineal y el valor de p está acotado (en [0,1]).

Método 1: Busquemos funciones de mejores respuestas e intersectemos.

Digamos que 1 juega la estrategia mixta $\sigma_1=(p,1-p)$ y 2 juega la estrategia $\sigma_2=(q,1-q)$.

• Escribamos el pago esperado de 1:

$$u_1(\sigma_1, \sigma_2) = p(5q + (1-q)) + (1-p)(2q + 3(1-q))$$

= $p(5q-2) + (3-q)$

• Y entonces, la mejor respuesta de 1 debe entregar el valor de p tal que:

$$\max_{p>0} p(5q-2) + (3-q)$$

Notemos que esta función es lineal y el valor de p está acotado (en [0,1]).

• Con lo anterior, la correspondencia de mejor respuesta queda dada por:

$$BR_1(\sigma_2) = \begin{cases} (1,0) & \text{si } q > \frac{2}{5} \\ (p,1-p), p \in [0,1] & \text{si } q = \frac{2}{5} \\ (0,1) & \text{si } q < \frac{2}{5} \end{cases}$$

		J2		
		L	R	
J1	U	5,2	1,0	
	D	2,1	3,3	

Y podemos replicar el procedimiento para el jugador 2:

Y podemos replicar el procedimiento para el jugador 2:

• El pago de 2 viene dado por:

Y podemos replicar el procedimiento para el jugador 2:

• El pago de 2 viene dado por:

$$u_2(\sigma_1, \sigma_2) = q(2p + (1-p)) + (1-q)(3(1-p))$$

= $q(4p-2) + (3-3p)$

Y podemos replicar el procedimiento para el jugador 2:

• El pago de 2 viene dado por:

$$u_2(\sigma_1, \sigma_2) = q(2p + (1-p)) + (1-q)(3(1-p))$$

= $q(4p-2) + (3-3p)$

• Con lo que el problema de optimización es:

$$\max_{q \ge 0} \quad q(4p-2) + (3-3p)$$

Y podemos replicar el procedimiento para el jugador 2:

• El pago de 2 viene dado por:

$$u_2(\sigma_1, \sigma_2) = q(2p + (1-p)) + (1-q)(3(1-p))$$

= $q(4p-2) + (3-3p)$

• Con lo que el problema de optimización es:

$$\max_{q \ge 0} \quad q(4p-2) + (3-3p)$$

• Y sigue que la mejor respuesta de 2 es:

$$BR_2(\sigma_1) = \left\{ \begin{array}{ll} (1,0) & \text{si } p > \frac{1}{2} \\ (q,1-q), q \in [0,1] & \text{si } q = \frac{1}{2} \\ (0,1) & \text{si } q < \frac{1}{2} \end{array} \right.$$

$$BR_1(\sigma_2) = \left\{ \begin{array}{ll} (1,0) & \text{si } q > \frac{2}{5} \\ (p,1-p), p \in [0,1] & \text{si } q = \frac{2}{5} \\ (0,1) & \text{si } q < \frac{2}{5} \end{array} \right. \quad BR_2(\sigma_1) = \left\{ \begin{array}{ll} (1,0) & \text{si } p > \frac{1}{2} \\ (q,1-q), q \in [0,1] & \text{si } p = \frac{1}{2} \\ (0,1) & \text{si } p < \frac{1}{2} \end{array} \right.$$

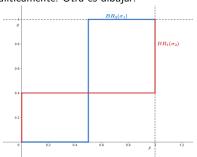
Y con esto podemos encontrar los ENEM del juego!

• Una opción es analizar analíticamente. Otra es dibujar:

$$BR_1(\sigma_2) = \left\{ \begin{array}{ll} (1,0) & \text{si } q > \frac{2}{5} \\ (p,1-p), p \in [0,1] & \text{si } q = \frac{2}{5} \\ (0,1) & \text{si } q < \frac{2}{5} \end{array} \right. \quad BR_2(\sigma_1) = \left\{ \begin{array}{ll} (1,0) & \text{si } p > \frac{1}{2} \\ (q,1-q), q \in [0,1] & \text{si } p = \frac{1}{2} \\ (0,1) & \text{si } p < \frac{1}{2} \end{array} \right.$$

Y con esto podemos encontrar los ENEM del juego!

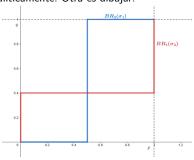
• Una opción es analizar analíticamente. Otra es dibujar:



$$BR_1(\sigma_2) = \left\{ \begin{array}{ll} (1,0) & \text{si } q > \frac{2}{5} \\ (p,1-p), p \in [0,1] & \text{si } q = \frac{2}{5} \\ (0,1) & \text{si } q < \frac{2}{5} \end{array} \right. \quad BR_2(\sigma_1) = \left\{ \begin{array}{ll} (1,0) & \text{si } p > \frac{1}{2} \\ (q,1-q), q \in [0,1] & \text{si } p = \frac{1}{2} \\ (0,1) & \text{si } p < \frac{1}{2} \end{array} \right.$$

Y con esto podemos encontrar los ENEM del juego!

• Una opción es analizar analíticamente. Otra es dibujar:

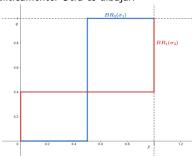


• De donde es fácil ver que hay 3 equilibrios. El primero cuando p=q=1, el segundo cuando $p=\frac{1}{2}, q=\frac{2}{5}$ y el tercero con p=q=1.

$$BR_1(\sigma_2) = \left\{ \begin{array}{ll} (1,0) & \text{si } q > \frac{2}{5} \\ (p,1-p), p \in [0,1] & \text{si } q = \frac{2}{5} \\ (0,1) & \text{si } q < \frac{2}{5} \end{array} \right. \quad BR_2(\sigma_1) = \left\{ \begin{array}{ll} (1,0) & \text{si } p > \frac{1}{2} \\ (q,1-q), q \in [0,1] & \text{si } p = \frac{1}{2} \\ (0,1) & \text{si } p < \frac{1}{2} \end{array} \right.$$

Y con esto podemos encontrar los ENEM del juego!

• Una opción es analizar analíticamente. Otra es dibujar:

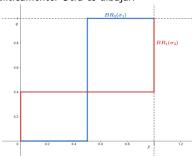


- De donde es fácil ver que hay 3 equilibrios. El primero cuando p=q=1, el segundo cuando $p=\frac{1}{2}, q=\frac{2}{5}$ y el tercero con p=q=1.
- Y los ENEM son entonces: $[(1,0),(1,0)],[(\frac{1}{2},\frac{1}{2}),(\frac{2}{5},\frac{3}{5})],[(0,1),(0,1)].$

$$BR_1(\sigma_2) = \left\{ \begin{array}{ll} (1,0) & \text{si } q > \frac{2}{5} \\ (p,1-p), p \in [0,1] & \text{si } q = \frac{2}{5} \\ (0,1) & \text{si } q < \frac{2}{5} \end{array} \right. \quad BR_2(\sigma_1) = \left\{ \begin{array}{ll} (1,0) & \text{si } p > \frac{1}{2} \\ (q,1-q), q \in [0,1] & \text{si } p = \frac{1}{2} \\ (0,1) & \text{si } p < \frac{1}{2} \end{array} \right.$$

Y con esto podemos encontrar los ENEM del juego!

• Una opción es analizar analíticamente. Otra es dibujar:



- De donde es fácil ver que hay 3 equilibrios. El primero cuando p=q=1, el segundo cuando $p=\frac{1}{2}, q=\frac{2}{5}$ y el tercero con p=q=1.
- Y los ENEM son entonces: $[(1,0),(1,0)],[(\frac{1}{2},\frac{1}{2}),(\frac{2}{5},\frac{3}{5})],[(0,1),(0,1)].$

Método 2: Usar la caracterización de los ENEM:

7 / 16

Método 2: Usar la caracterización de los ENEM:

Proposición: Si σ es un ENEM, y $s_i, s_i' \in sop(\sigma_i) = \{si \in S_i : \sigma_i(s_i) > 0\}$, entonces:

$$u_i(s_i, \sigma_{-i}) = u_i(s'_i, \sigma_{-i})$$

• Primero, encontramos rápidamente los EN: (U,L) y (D,R).

Método 2: Usar la caracterización de los ENEM:

Proposición: Si σ es un ENEM, y $s_i, s_i' \in sop(\sigma_i) = \{si \in S_i : \sigma_i(s_i) > 0\}$, entonces:

$$u_i(s_i, \sigma_{-i}) = u_i(s_i', \sigma_{-i})$$

- Primero, encontramos rápidamente los EN: (U,L) y (D,R).
- Y busquemos un equilibrio en estrategias mixtas en que ambos jugadores pongan peso positivo en ambas estrategias.

Método 2: Usar la caracterización de los ENEM:

Proposición: Si σ es un ENEM, y $s_i, s_i' \in sop(\sigma_i) = \{si \in S_i : \sigma_i(s_i) > 0\}$, entonces:

$$u_i(s_i, \sigma_{-i}) = u_i(s_i', \sigma_{-i})$$

- Primero, encontramos rápidamente los EN: (U,L) y (D,R).
- Y busquemos un equilibrio en estrategias mixtas en que ambos jugadores pongan peso positivo en ambas estrategias.
- Como antes, digamos que 1 juega la estrategia mixta $\sigma_1 = (p, 1-p)$ y 2 juega la estrategia $\sigma_2 = (q, 1-q)$.

Método 2: Usar la caracterización de los ENEM:

Proposición: Si σ es un ENEM, y $s_i, s_i' \in sop(\sigma_i) = \{si \in S_i : \sigma_i(s_i) > 0\}$, entonces:

$$u_i(s_i, \sigma_{-i}) = u_i(s'_i, \sigma_{-i})$$

- Primero, encontramos rápidamente los EN: (U,L) y (D,R).
- Y busquemos un equilibrio en estrategias mixtas en que ambos jugadores pongan peso positivo en ambas estrategias.
- Como antes, digamos que 1 juega la estrategia mixta $\sigma_1 = (p, 1-p)$ y 2 juega la estrategia $\sigma_2 = (q, 1-q)$.
- La proposición para 1 nos dice que:

$$u_1(U, \sigma_2) = u_1(D, \sigma_2) \iff 5q + (1 - q) = 2q + 3(1 - q) \iff q = \frac{2}{5}$$

Método 2: Usar la caracterización de los ENEM:

Proposición: Si σ es un ENEM, y $s_i, s_i' \in sop(\sigma_i) = \{si \in S_i : \sigma_i(s_i) > 0\}$, entonces:

$$u_i(s_i, \sigma_{-i}) = u_i(s_i', \sigma_{-i})$$

- Primero, encontramos rápidamente los EN: (U,L) y (D,R).
- Y busquemos un equilibrio en estrategias mixtas en que ambos jugadores pongan peso positivo en ambas estrategias.
- Como antes, digamos que 1 juega la estrategia mixta $\sigma_1 = (p, 1-p)$ y 2 juega la estrategia $\sigma_2 = (q, 1-q)$.
- La proposición para 1 nos dice que:

$$u_1(U, \sigma_2) = u_1(D, \sigma_2) \iff 5q + (1 - q) = 2q + 3(1 - q) \iff q = \frac{2}{5}$$

• Y análogamente, para el otro jugador:

$$u_2(L, \sigma_1) = u_2(R, \sigma_1) \iff 2p + (1-p) = 3(1-p) \iff p = \frac{1}{2}$$

Método 2: Usar la caracterización de los ENEM:

Proposición: Si σ es un ENEM, y $s_i, s_i' \in sop(\sigma_i) = \{si \in S_i : \sigma_i(s_i) > 0\}$, entonces:

$$u_i(s_i, \sigma_{-i}) = u_i(s_i', \sigma_{-i})$$

- Primero, encontramos rápidamente los EN: (U,L) y (D,R).
- Y busquemos un equilibrio en estrategias mixtas en que ambos jugadores pongan peso positivo en ambas estrategias.
- Como antes, digamos que 1 juega la estrategia mixta $\sigma_1 = (p, 1-p)$ y 2 juega la estrategia $\sigma_2 = (q, 1-q)$.
- La proposición para 1 nos dice que:

$$u_1(U, \sigma_2) = u_1(D, \sigma_2) \iff 5q + (1 - q) = 2q + 3(1 - q) \iff q = \frac{2}{5}$$

• Y análogamente, para el otro jugador:

$$u_2(L, \sigma_1) = u_2(R, \sigma_1) \iff 2p + (1-p) = 3(1-p) \iff p = \frac{1}{2}$$

Contenido

1 P1. Un juego sencillo

2 P2. Licitaciones con valoraciones conocidas

P3. Licitaciones con valoraciones privadas

Primer precio: Los participantes simultáneamente ofrecen sumas $b_i \geq 0$. El ganador es el participante con la mayor oferta, que obtiene el bien y paga su oferta. El otro participante no obtiene el bien y no paga nada.

Primer precio: Los participantes simultáneamente ofrecen sumas $b_i \ge 0$. El ganador es el participante con la mayor oferta, que obtiene el bien y paga su oferta. El otro participante no obtiene el bien y no paga nada.

Digamos que los jugadores juegan estrategias (b_1, b_2) en un EN. Notemos que:

• Si $b_i > b_{-i}$, no puede ser haber equilibrio: El jugador i tiene incentivos a jugar $\tilde{b}_i = b_{-i} + \varepsilon < b_i$

Primer precio: Los participantes simultáneamente ofrecen sumas $b_i \ge 0$. El ganador es el participante con la mayor oferta, que obtiene el bien y paga su oferta. El otro participante no obtiene el bien y no paga nada.

Digamos que los jugadores juegan estrategias (b_1, b_2) en un EN. Notemos que:

- Si $b_i > b_{-i}$, no puede ser haber equilibrio: El jugador i tiene incentivos a jugar $\tilde{b}_i = b_{-i} + \varepsilon < b_i$
- $b_i = b_{-i} > v$, tampoco puede haber equilibrio: El pago es $\frac{1}{2}(v - b_i) < 0$ y jugar $\tilde{b}_i = v$ entrega pago 0.

Primer precio: Los participantes simultáneamente ofrecen sumas $b_i \ge 0$. El ganador es el participante con la mayor oferta, que obtiene el bien y paga su oferta. El otro participante no obtiene el bien y no paga nada.

Digamos que los jugadores juegan estrategias (b_1, b_2) en un EN. Notemos que:

- Si $b_i > b_{-i}$, no puede ser haber equilibrio: El jugador i tiene incentivos a jugar $\tilde{b}_i = b_{-i} + \varepsilon < b_i$
- $b_i = b_{-i} > v$, tampoco puede haber equilibrio: El pago es $\frac{1}{2}(v - b_i) < 0$ y jugar $\tilde{b}_i = v$ entrega pago 0.
- $b_i = b_{-i} < v$ tampoco puede haber equilibrio: Esta estrategia entrega pago $\frac{1}{2}(v-b_i)$ y el desvío $\tilde{b}_i = b_i + \varepsilon$ para ε arbitrariamente pequeño entrega pago $(v-b_i)$.

Primer precio: Los participantes simultáneamente ofrecen sumas $b_i \ge 0$. El ganador es el participante con la mayor oferta, que obtiene el bien y paga su oferta. El otro participante no obtiene el bien y no paga nada.

Digamos que los jugadores juegan estrategias (b_1, b_2) en un EN. Notemos que:

- Si $b_i > b_{-i}$, no puede ser haber equilibrio: El jugador i tiene incentivos a jugar $\tilde{b}_i = b_{-i} + \varepsilon < b_i$
- $b_i = b_{-i} > v$, tampoco puede haber equilibrio: El pago es $\frac{1}{2}(v - b_i) < 0$ y jugar $\tilde{b}_i = v$ entrega pago 0.
- $b_i = b_{-i} < v$ tampoco puede haber equilibrio: Esta estrategia entrega pago $\frac{1}{2}(v - b_i)$ y el desvío $\tilde{b}_i = b_i + \varepsilon$ para ε arbitrariamente pequeño entrega pago $(v - b_i)$.
- Solo nos queda el caso $b_i = b_i = v$: En este caso la utilidad de ambos jugadores es 0. Cualquier desvío a $\tilde{b}_i < v$ sigue entregando pago nulo, mientras que cualquiera a $\tilde{b}_i > v$ entrega pago negativo.

Primer precio: Los participantes simultáneamente ofrecen sumas $b_i \ge 0$. El ganador es el participante con la mayor oferta, que obtiene el bien y paga su oferta. El otro participante no obtiene el bien y no paga nada.

Digamos que los jugadores juegan estrategias (b_1, b_2) en un EN. Notemos que:

- Si $b_i > b_{-i}$, no puede ser haber equilibrio: El jugador i tiene incentivos a jugar $\tilde{b}_i = b_{-i} + \varepsilon < b_i$
- $b_i = b_{-i} > v$, tampoco puede haber equilibrio: El pago es $\frac{1}{2}(v - b_i) < 0$ y jugar $\tilde{b}_i = v$ entrega pago 0.
- $b_i = b_{-i} < v$ tampoco puede haber equilibrio: Esta estrategia entrega pago $\frac{1}{2}(v - b_i)$ y el desvío $\tilde{b}_i = b_i + \varepsilon$ para ε arbitrariamente pequeño entrega pago $(v - b_i)$.
- Solo nos queda el caso $b_i = b_i = v$: En este caso la utilidad de ambos jugadores es 0. Cualquier desvío a $\tilde{b}_i < v$ sigue entregando pago nulo, mientras que cualquiera a $\tilde{b}_i > v$ entrega pago negativo.

Se concluye que el único EN del juego es aquel en que ambos jugadores juegan exactamente su valoración por el bien y la utilidad del vendedor es justamente este valor.

Todos pagan. Los participantes ofrecen sumas $b_i \ge 0$. El ganador es el participante con la mayor oferta, que obtiene el bien y paga su oferta. El otro participante no obtiene el bien, pero si paga su oferta.

Todos pagan. Los participantes ofrecen sumas $b_i \ge 0$. El ganador es el participante con la mayor oferta, que obtiene el bien y paga su oferta. El otro participante no obtiene el bien, pero si paga su oferta.

Supongamos que lo hubiera. Digamos (b_1, b_2) es un perfil de equilibrio. Notemos que:

Todos pagan. Los participantes ofrecen sumas $b_i \ge 0$. El ganador es el participante con la mayor oferta, que obtiene el bien y paga su oferta. El otro participante no obtiene el bien, pero si paga su oferta.

Supongamos que lo hubiera. Digamos (b_1, b_2) es un perfil de equilibrio. Notemos que:

• Si $b_i > b_{-i}$, no puede ser haber equilibrio: El argumento es el mismo, el desvío $\tilde{b}_i = b_{-i} + \varepsilon$ es tal que sigue ganando el bien, pero paga

Luego $b_1 = b_2$.

menos

Todos pagan. Los participantes ofrecen sumas $b_i \ge 0$. El ganador es el participante con la mayor oferta, que obtiene el bien y paga su oferta. El otro participante no obtiene el bien, pero si paga su oferta.

Supongamos que lo hubiera. Digamos (b_1,b_2) es un perfil de equilibrio. Notemos que:

- Si $b_i > b_{-i}$, no puede ser haber equilibrio: El argumento es el mismo, el desvío $\tilde{b}_i = b_{-i} + \varepsilon$ es tal que sigue ganando el bien, pero paga menos.
 - Luego $b_1 = b_2$.
- Si $b_i=b_{-i}>v$, tampoco puede haber equilibrio: Una vez más los pagos para i son negativos y el desvío $\tilde{b}=0$ entrega utilidad nula.

Todos pagan. Los participantes ofrecen sumas $b_i \ge 0$. El ganador es el participante con la mayor oferta, que obtiene el bien y paga su oferta. El otro participante no obtiene el bien, pero si paga su oferta.

Supongamos que lo hubiera. Digamos (b_1,b_2) es un perfil de equilibrio. Notemos que:

- Si $b_i > b_{-i}$, no puede ser haber equilibrio: El argumento es el mismo, el desvío $\tilde{b}_i = b_{-i} + \varepsilon$ es tal que sigue ganando el bien, pero paga menos.
 - Luego $b_1 = b_2$.
- Si $b_i=b_{-i}>v$, tampoco puede haber equilibrio: Una vez más los pagos para i son negativos y el desvío $\tilde{b}=0$ entrega utilidad nula.
- Si $b_i = b_{-i} < v$, tampoco puede haber equilibrio: Una vez más, cualquier jugador tiene desvíos hacia una cantidad ligeramente más alta.

Todos pagan. Los participantes ofrecen sumas $b_i \ge 0$. El ganador es el participante con la mayor oferta, que obtiene el bien y paga su oferta. El otro participante no obtiene el bien, pero si paga su oferta.

Supongamos que lo hubiera. Digamos (b_1, b_2) es un perfil de equilibrio. Notemos que:

- Si $b_i > b_{-i}$, no puede ser haber equilibrio: El argumento es el mismo, el desvío $\tilde{b}_i = b_{-i} + \varepsilon$ es tal que sigue ganando el bien, pero paga menos.
 - Luego $b_1 = b_2$.
- Si $b_i=b_{-i}>v$, tampoco puede haber equilibrio: Una vez más los pagos para i son negativos y el desvío $\tilde{b}=0$ entrega utilidad nula.
- Si $b_i = b_{-i} < v$, tampoco puede haber equilibrio: Una vez más, cualquier jugador tiene desvíos hacia una cantidad ligeramente más alta.
- Si $b_i = b_{-i} = v$, ahora tampoco hay equilibrio: Producto de que acá se paga la oferta aún cuando no se lleve el bien. El pago de cualquier jugador es $-\frac{v}{2}$. El desvío $\tilde{b}_i = 0$ entrega utilidad nula.

Todos pagan. Los participantes ofrecen sumas $b_i \ge 0$. El ganador es el participante con la mayor oferta, que obtiene el bien y paga su oferta. El otro participante no obtiene el bien, pero si paga su oferta.

Supongamos que lo hubiera. Digamos (b_1, b_2) es un perfil de equilibrio. Notemos que:

- Si $b_i > b_{-i}$, no puede ser haber equilibrio: El argumento es el mismo, el desvío $\tilde{b}_i = b_{-i} + \varepsilon$ es tal que sigue ganando el bien, pero paga menos.
 - Luego $b_1 = b_2$.
- Si $b_i=b_{-i}>v$, tampoco puede haber equilibrio: Una vez más los pagos para i son negativos y el desvío $\tilde{b}=0$ entrega utilidad nula.
- Si $b_i = b_{-i} < v$, tampoco puede haber equilibrio: Una vez más, cualquier jugador tiene desvíos hacia una cantidad ligeramente más alta.
- Si $b_i = b_{-i} = v$, ahora tampoco hay equilibrio: Producto de que acá se paga la oferta aún cuando no se lleve el bien. El pago de cualquier jugador es $-\frac{v}{2}$. El desvío $\tilde{b}_i = 0$ entrega utilidad nula.

Se concluye que en este caso no puede haber EN.

Todos pagan. Los participantes ofrecen sumas $b_i \ge 0$. El ganador es el participante con la mayor oferta, que obtiene el bien y paga su oferta. El otro participante no obtiene el bien, pero si paga su oferta.

Todos pagan. Los participantes ofrecen sumas $b_i \ge 0$. El ganador es el participante con la mayor oferta, que obtiene el bien y paga su oferta. El otro participante no obtiene el bien, pero si paga su oferta.

Busquemos un equilibrio simétrico, en que ambos jugadores juegan de acuerdo a una distribución $F:[c,v] \to [0,1]$ continua, con c algún valor por determinar.

Todos pagan. Los participantes ofrecen sumas $b_i \ge 0$. El ganador es el participante con la mayor oferta, que obtiene el bien y paga su oferta. El otro participante no obtiene el bien, pero si paga su oferta.

Busquemos un equilibrio simétrico, en que ambos jugadores juegan de acuerdo a una distribución $F: [c, v] \to [0, 1]$ continua, con c algún valor por determinar.

ullet Como el soporte de F es [c, v], en equilibrio debe tenerse que:

$$u_i(b, F) = u_i(v, F), \forall b \in [c, v]$$

Todos pagan. Los participantes ofrecen sumas $b_i \ge 0$. El ganador es el participante con la mayor oferta, que obtiene el bien y paga su oferta. El otro participante no obtiene el bien, pero si paga su oferta.

Busquemos un equilibrio simétrico, en que ambos jugadores juegan de acuerdo a una distribución $F: [c, v] \to [0, 1]$ continua, con c algún valor por determinar.

• Como el soporte de F es [c, v], en equilibrio debe tenerse que:

$$u_i(b, F) = u_i(v, F), \forall b \in [c, v]$$

$$u_i(b, F) = (v - b)\mathbb{P}(b_{-i} < b) + (\frac{v}{2} - b)\mathbb{P}(b_{-i} = b) - b\mathbb{P}(b_{-i} > b)$$

Todos pagan. Los participantes ofrecen sumas $b_i \ge 0$. El ganador es el participante con la mayor oferta, que obtiene el bien y paga su oferta. El otro participante no obtiene el bien, pero si paga su oferta.

Busquemos un equilibrio simétrico, en que ambos jugadores juegan de acuerdo a una distribución $F:[c,v] \to [0,1]$ continua, con c algún valor por determinar.

• Como el soporte de F es [c, v], en equilibrio debe tenerse que:

$$u_i(b, F) = u_i(v, F), \forall b \in [c, v]$$

$$u_{i}(b,F) = (v-b)\mathbb{P}(b_{-i} < b) + (\frac{v}{2} - b)\mathbb{P}(b_{-i} = b) - b\mathbb{P}(b_{-i} > b)$$

= $(v-b)\mathbb{P}(b_{-i} < b) - b\mathbb{P}(b_{-i} > b)$

Todos pagan. Los participantes ofrecen sumas $b_i \ge 0$. El ganador es el participante con la mayor oferta, que obtiene el bien y paga su oferta. El otro participante no obtiene el bien, pero si paga su oferta.

Busquemos un equilibrio simétrico, en que ambos jugadores juegan de acuerdo a una distribución $F:[c,v] \to [0,1]$ continua, con c algún valor por determinar.

• Como el soporte de F es [c, v], en equilibrio debe tenerse que:

$$u_i(b, F) = u_i(v, F), \forall b \in [c, v]$$

$$u_{i}(b, F) = (v - b)\mathbb{P}(b_{-i} < b) + (\frac{v}{2} - b)\mathbb{P}(b_{-i} = b) - b\mathbb{P}(b_{-i} > b)$$

$$= (v - b)\mathbb{P}(b_{-i} < b) - b\mathbb{P}(b_{-i} > b)$$

$$= (v - b)F(b) - b(1 - F(b))$$

Todos pagan. Los participantes ofrecen sumas $b_i \ge 0$. El ganador es el participante con la mayor oferta, que obtiene el bien y paga su oferta. El otro participante no obtiene el bien, pero si paga su oferta.

Busquemos un equilibrio simétrico, en que ambos jugadores juegan de acuerdo a una distribución $F:[c,v] \to [0,1]$ continua, con c algún valor por determinar.

• Como el soporte de F es [c, v], en equilibrio debe tenerse que:

$$u_i(b, F) = u_i(v, F), \forall b \in [c, v]$$

Calculemos:

$$u_{i}(b, F) = (v - b)\mathbb{P}(b_{-i} < b) + (\frac{v}{2} - b)\mathbb{P}(b_{-i} = b) - b\mathbb{P}(b_{-i} > b)$$

$$= (v - b)\mathbb{P}(b_{-i} < b) - b\mathbb{P}(b_{-i} > b)$$

$$= (v - b)F(b) - b(1 - F(b))$$

• Si evaluamos esta expresión en b = v se obtiene que: $u_i(b, F) = 0$.

Todos pagan. Los participantes ofrecen sumas $b_i \ge 0$. El ganador es el participante con la mayor oferta, que obtiene el bien y paga su oferta. El otro participante no obtiene el bien, pero si paga su oferta.

Busquemos un equilibrio simétrico, en que ambos jugadores juegan de acuerdo a una distribución $F:[c,v] \to [0,1]$ continua, con c algún valor por determinar.

ullet Como el soporte de F es [c,v], en equilibrio debe tenerse que:

$$u_i(b, F) = u_i(v, F), \forall b \in [c, v]$$

$$u_{i}(b,F) = (v-b)\mathbb{P}(b_{-i} < b) + (\frac{v}{2} - b)\mathbb{P}(b_{-i} = b) - b\mathbb{P}(b_{-i} > b)$$

$$= (v-b)\mathbb{P}(b_{-i} < b) - b\mathbb{P}(b_{-i} > b)$$

$$= (v-b)F(b) - b(1 - F(b))$$

- Si evaluamos esta expresión en b = v se obtiene que: $u_i(b, F) = 0$.
- Usando la ecuación anterior se obtiene que:

$$F(b) = \frac{b}{v}$$

Todos pagan. Los participantes ofrecen sumas $b_i \ge 0$. El ganador es el participante con la mayor oferta, que obtiene el bien y paga su oferta. El otro participante no obtiene el bien, pero si paga su oferta.

Busquemos un equilibrio simétrico, en que ambos jugadores juegan de acuerdo a una distribución $F:[c,v] \to [0,1]$ continua, con c algún valor por determinar.

• Como el soporte de F es [c, v], en equilibrio debe tenerse que:

$$u_i(b, F) = u_i(v, F), \forall b \in [c, v]$$

Calculemos:

$$u_{i}(b,F) = (v-b)\mathbb{P}(b_{-i} < b) + (\frac{v}{2} - b)\mathbb{P}(b_{-i} = b) - b\mathbb{P}(b_{-i} > b)$$

$$= (v-b)\mathbb{P}(b_{-i} < b) - b\mathbb{P}(b_{-i} > b)$$

$$= (v-b)F(b) - b(1 - F(b))$$

- Si evaluamos esta expresión en b = v se obtiene que: $u_i(b, F) = 0$.
- Usando la ecuación anterior se obtiene que:

$$F(b) = \frac{b}{v}$$

• Y como F es una distribución F(c) = 0, por lo que c = 0.

Todos pagan. Los participantes ofrecen sumas $b_i \ge 0$. El ganador es el participante con la mayor oferta, que obtiene el bien y paga su oferta. El otro participante no obtiene el bien, pero si paga su oferta.

Busquemos un equilibrio simétrico, en que ambos jugadores juegan de acuerdo a una distribución $F: [c, v] \to [0, 1]$ continua, con c algún valor por determinar.

• Como el soporte de F es [c, v], en equilibrio debe tenerse que:

$$u_i(b, F) = u_i(v, F), \forall b \in [c, v]$$

Calculemos:

$$u_{i}(b, F) = (v - b)\mathbb{P}(b_{-i} < b) + (\frac{v}{2} - b)\mathbb{P}(b_{-i} = b) - b\mathbb{P}(b_{-i} > b)$$

$$= (v - b)\mathbb{P}(b_{-i} < b) - b\mathbb{P}(b_{-i} > b)$$

$$= (v - b)F(b) - b(1 - F(b))$$

- Si evaluamos esta expresión en b = v se obtiene que: $u_i(b, F) = 0$.
- Usando la ecuación anterior se obtiene que:

$$F(b) = \frac{b}{v}$$

• Y como F es una distribución F(c) = 0, por lo que c = 0.

Sigue que el par de estrategias mixtas (F, F) conforma ENEM y que la recaudación del vendedor viene dada por:

 $2\int_{-\infty}^{\infty} dx = v$

Todos pagan. Los participantes ofrecen sumas $b_i \ge 0$. El ganador es el participante con la mayor oferta, que obtiene el bien y paga su oferta. El otro participante no obtiene el bien, pero si paga su oferta.

Busquemos un equilibrio simétrico, en que ambos jugadores juegan de acuerdo a una distribución $F: [c, v] \to [0, 1]$ continua, con c algún valor por determinar.

• Como el soporte de F es [c, v], en equilibrio debe tenerse que:

$$u_i(b, F) = u_i(v, F), \forall b \in [c, v]$$

Calculemos:

$$u_{i}(b, F) = (v - b)\mathbb{P}(b_{-i} < b) + (\frac{v}{2} - b)\mathbb{P}(b_{-i} = b) - b\mathbb{P}(b_{-i} > b)$$

$$= (v - b)\mathbb{P}(b_{-i} < b) - b\mathbb{P}(b_{-i} > b)$$

$$= (v - b)F(b) - b(1 - F(b))$$

- Si evaluamos esta expresión en b = v se obtiene que: $u_i(b, F) = 0$.
- Usando la ecuación anterior se obtiene que:

$$F(b) = \frac{b}{v}$$

• Y como F es una distribución F(c) = 0, por lo que c = 0.

Sigue que el par de estrategias mixtas (F, F) conforma ENEM y que la recaudación del vendedor viene dada por:

 $2\int_{-\infty}^{\infty} dx = v$

Contenido

P1. Un juego sencillo

2 P2. Licitaciones con valoraciones conocidas

3 P3. Licitaciones con valoraciones privadas

Segundo precio: Los participantes ofrecen simultáneamente sumas $b_i \ge 0$. El ganador es el participante con la mayor oferta, que obtiene el bien, pero paga la oferta del perdedor. El otro participante no obtiene el bien y no paga nada.

Segundo precio: Los participantes ofrecen simultáneamente sumas $b_i \geq 0$. El ganador es el participante con la mayor oferta, que obtiene el bien, pero paga la oferta del perdedor. El otro participante no obtiene el bien y no paga nada.

Siempre que queramos definir un juego con información incompleta (bayesiano) debemos describir las mismas 5 cosas:

• Conjunto de jugadores: I.Los dos participantes de la subasta: $I = \{1, 2\}$.

Segundo precio: Los participantes ofrecen simultáneamente sumas $b_i \ge 0$. El ganador es el participante con la mayor oferta, que obtiene el bien, pero paga la oferta del perdedor. El otro participante no obtiene el bien y no paga nada.

- Conjunto de jugadores: I.Los dos participantes de la subasta: $I = \{1, 2\}$.
- Conjuntos de acciones: (S_i)_{i∈I}. El espacio de posibles apuestas corresponde a los reales no negativos: S_i = ℝ₊.

Segundo precio: Los participantes ofrecen simultáneamente sumas $b_i \ge 0$. El ganador es el participante con la mayor oferta, que obtiene el bien, pero paga la oferta del perdedor. El otro participante no obtiene el bien y no paga nada.

- Conjunto de jugadores: *I*.Los dos participantes de la subasta: $I = \{1, 2\}$.
- Conjuntos de acciones: (S_i)_{i∈I}. El espacio de posibles apuestas corresponde a los reales no negativos: S_i = ℝ₊.
- Conjuntos de tipos: $(\Theta_i)_{i \in I}$. Los tipos de los jugadores quedan definidos por su valoración por el bien: $\Theta_i = [0, 1]$.

Segundo precio: Los participantes ofrecen simultáneamente sumas $b_i \geq 0$. El ganador es el participante con la mayor oferta, que obtiene el bien, pero paga la oferta del perdedor. El otro participante no obtiene el bien y no paga nada.

- Conjunto de jugadores: *I*.Los dos participantes de la subasta: $I = \{1, 2\}$.
- Conjuntos de acciones: $(S_i)_{i \in I}$. El espacio de posibles apuestas corresponde a los reales no negativos: $S_i = \mathbb{R}_+$.
- Conjuntos de tipos: $(\Theta_i)_{i \in I}$. Los tipos de los jugadores quedan definidos por su valoración por el bien: $\Theta_i = [0, 1]$.
- Distribución de probabilidad sobre los tipos: P. Para cada jugador, la valoración distribuye a partir de una uniforme [0, 1].

Segundo precio: Los participantes ofrecen simultáneamente sumas $b_i \geq 0$. El ganador es el participante con la mayor oferta, que obtiene el bien, pero paga la oferta del perdedor. El otro participante no obtiene el bien y no paga nada.

Siempre que queramos definir un juego con información incompleta (bayesiano) debemos describir las mismas 5 cosas:

- Conjunto de jugadores: *I*.Los dos participantes de la subasta: $I = \{1, 2\}$.
- Conjuntos de acciones: $(S_i)_{i \in I}$. El espacio de posibles apuestas corresponde a los reales no negativos: $S_i = \mathbb{R}_+$.
- Conjuntos de tipos: $(\Theta_i)_{i \in I}$. Los tipos de los jugadores quedan definidos por su valoración por el bien: $\Theta_i = [0, 1]$.
- Distribución de probabilidad sobre los tipos: P. Para cada jugador, la valoración distribuye a partir de una uniforme [0, 1].
- Funciones de utilidad: $u_i(s, \theta)$. En este caso el juego tiene valores privados y la utilidad de cada jugador viene dada por:

$$u_i(b_i, b_j, v_i) = \begin{cases} v_i - b_j & \text{si } b_i > b_j \\ \frac{v_i - b_j}{2} & \text{si } b_i = b_j \\ 0 & \text{si } b_i < b_i \end{cases}$$

Donde denotamos b_i a la apuesta del jugador i.

$$u_i(b_i, b_j, v_i) = \begin{cases} v_i - b_j & \text{si } b_i > b_j \\ \frac{v_i - b_j}{2} & \text{si } b_i = b_j \\ 0 & \text{si } b_i < b_j \end{cases}$$

 Busquemos un equilibrio simétrico. Es decir, una función que mapea desde el espacio de tipos en el espacio de estrategias. En equilibrio, cuando ambos jugadores juegan de acuerdo a esta función, ninguno debe tener incentivos al desvío.

$$u_i(b_i, b_j, v_i) = \begin{cases} v_i - b_j & \text{si } b_i > b_j \\ \frac{v_i - b_j}{2} & \text{si } b_i = b_j \\ 0 & \text{si } b_i < b_j \end{cases}$$

- Busquemos un equilibrio simétrico. Es decir, una función que mapea desde el espacio de tipos en el espacio de estrategias. En equilibrio, cuando ambos jugadores juegan de acuerdo a esta función, ninguno debe tener incentivos al desvío.
- Supongamos que esta función σ es creciente, invertible, diferenciable y tal que $\sigma:[0,1]\longrightarrow [0,1].$

$$u_i(b_i, b_j, v_i) = \begin{cases} v_i - b_j & \text{si } b_i > b_j \\ \frac{v_i - b_j}{2} & \text{si } b_i = b_j \\ 0 & \text{si } b_i < b_j \end{cases}$$

- Busquemos un equilibrio simétrico. Es decir, una función que mapea desde el espacio de tipos en el espacio de estrategias. En equilibrio, cuando ambos jugadores juegan de acuerdo a esta función, ninguno debe tener incentivos al desvío.
- Supongamos que esta función σ es creciente, invertible, diferenciable y tal que $\sigma: [0,1] \longrightarrow [0,1].$
- De la caracterización para los EB, sabemos que si esta función es de equilibrio, debe ser tal que:

$$\sigma(v_i) \in arg \ max_{b_i \in S_i} \mathbb{E}[u_i(b_i, \sigma(v_j), v_i) | v_i]$$

$$u_i(b_i, b_j, v_i) = \begin{cases} v_i - b_j & \text{si } b_i > b_j \\ \frac{v_i - b_j}{2} & \text{si } b_i = b_j \\ 0 & \text{si } b_i < b_j \end{cases}$$

- Busquemos un equilibrio simétrico. Es decir, una función que mapea desde el espacio de tipos en el espacio de estrategias. En equilibrio, cuando ambos jugadores juegan de acuerdo a esta función, ninguno debe tener incentivos al desvío.
- Supongamos que esta función σ es creciente, invertible, diferenciable y tal que $\sigma: [0,1] \longrightarrow [0,1].$
- De la caracterización para los EB, sabemos que si esta función es de equilibrio, debe ser tal que:

$$\sigma(v_i) \in \arg\max_{b_i \in S_i} \mathbb{E}[u_i(b_i, \sigma(v_j), v_i)|v_i]$$

• Pero esta esperanza es fácil de calcular pues $v_i \sim U[0,1]$:

$$\mathbb{E}[u_i(b_i,\sigma(v_j),v_i)|v_i] = \int_0^1 u_i(b_i,\sigma(v_j),v_i)dv_j$$

$$u_i(b_i, b_j, v_i) = \begin{cases} v_i - b_j & \text{si } b_i > b_j \\ \frac{v_i - b_j}{2} & \text{si } b_i = b_j \\ 0 & \text{si } b_i < b_j \end{cases}$$

- Busquemos un equilibrio simétrico. Es decir, una función que mapea desde el espacio de tipos en el espacio de estrategias. En equilibrio, cuando ambos jugadores juegan de acuerdo a esta función, ninguno debe tener incentivos al desvío.
- Supongamos que esta función σ es creciente, invertible, diferenciable y tal que $\sigma: [0,1] \longrightarrow [0,1].$
- De la caracterización para los EB, sabemos que si esta función es de equilibrio, debe ser tal que:

$$\sigma(v_i) \in \arg\max_{b_i \in S_i} \mathbb{E}[u_i(b_i, \sigma(v_j), v_i)|v_i]$$

• Pero esta esperanza es fácil de calcular pues $v_i \sim U[0,1]$:

$$\mathbb{E}[u_i(b_i,\sigma(v_j),v_i)|v_i] = \int_0^1 u_i(b_i,\sigma(v_j),v_i)dv_j$$

Además, como σ es invertible y creciente:

$$b_i > \sigma(v_j) \iff \sigma^{-1}(b_i) > v_j$$

Y entonces:

$$u_i(b_i, b_j, v_i) = \begin{cases} v_i - b_j & \text{si } b_i > b_j \\ \frac{v_i - b_j}{2} & \text{si } b_i = b_j \\ 0 & \text{si } b_i < b_j \end{cases}$$

- Busquemos un equilibrio simétrico. Es decir, una función que mapea desde el espacio de tipos en el espacio de estrategias. En equilibrio, cuando ambos jugadores juegan de acuerdo a esta función, ninguno debe tener incentivos al desvío.
- Supongamos que esta función σ es creciente, invertible, diferenciable y tal que $\sigma:[0,1]\longrightarrow [0,1].$
- De la caracterización para los EB, sabemos que si esta función es de equilibrio, debe ser tal que:

$$\sigma(v_i) \in \arg \max_{b_i \in S_i} \mathbb{E}[u_i(b_i, \sigma(v_j), v_i) | v_i]$$

• Pero esta esperanza es fácil de calcular pues $v_i \sim U[0,1]$:

$$\mathbb{E}[u_i(b_i,\sigma(v_j),v_i)|v_i] = \int_0^1 u_i(b_i,\sigma(v_j),v_i)dv_j$$

Además, como σ es invertible y creciente:

$$b_i > \sigma(v_j) \iff \sigma^{-1}(b_i) > v_j$$

Y entonces:

$$\mathbb{E}[u_i(b_i, \sigma(v_j), v_i)|v_i] = \int_0^{\sigma^{-1}(b_i)} (v_i - \sigma(v_j)) dv_j + \underbrace{\int_{\sigma^{-1}(b_i)}^{\sigma^{-1}(b_i)} \frac{(v_i - \sigma(v_j))}{2} dv_j}_{=\sigma^{-1}(b_i)} + \underbrace{\int_{\sigma^{-1}(b_i)}^{1} 0 dv_j}_{=\sigma^{-1}(b_i)} + \underbrace{\int_{\sigma^{-1}(b_$$

$$\sigma(v_i) \in \arg \max_{b_i \in S_i} \mathbb{E}[u_i(b_i, \sigma(v_j), v_i)|v_i]$$

$$\mathbb{E}[u_i(b_i,\sigma(v_j),v_i)|v_i] = \int_0^{\sigma^{-1}(b_i)} (v_i - \sigma(v_j)) dv_j$$

• La condición de primer orden es que:

$$\frac{\partial \mathbb{E}[u_i(b_i,\sigma(v_j),v_i)|v_i]}{\partial b_i}=0$$

$$\sigma(v_i) \in arg \ max_{b_i \in S_i} \mathbb{E}[u_i(b_i, \sigma(v_i), v_i) | v_i]$$

$$\mathbb{E}[u_i(b_i,\sigma(v_j),v_i)|v_i] = \int_0^{\sigma^{-1}(b_i)} (v_i - \sigma(v_j)) dv_j$$

• La condición de primer orden es que:

$$\frac{\partial \mathbb{E}[u_i(b_i,\sigma(v_j),v_i)|v_i]}{\partial b_i}=0$$

• Por el Teorema Fundamental del Cálculo:

$$(\sigma^{-1}(b_i))'(v_i - \sigma(\sigma^{-1}(b_i))) = 0$$

$$\sigma(v_i) \in arg \ max_{b_i \in S_i} \mathbb{E}[u_i(b_i, \sigma(v_j), v_i) | v_i]$$

$$\mathbb{E}[u_i(b_i,\sigma(v_j),v_i)|v_i] = \int_0^{\sigma^{-1}(b_i)} (v_i - \sigma(v_j)) dv_j$$

• La condición de primer orden es que:

$$\frac{\partial \mathbb{E}[u_i(b_i,\sigma(v_j),v_i)|v_i]}{\partial b_i} = 0$$

Por el Teorema Fundamental del Cálculo:

$$(\sigma^{-1}(b_i))'(v_i - \sigma(\sigma^{-1}(b_i))) = 0$$

• Como σ es invertible, se obtiene que entonces: $v_i = b_i$.

$$\sigma(v_i) \in \arg\max_{b_i \in S_i} \mathbb{E}[u_i(b_i, \sigma(v_j), v_i)|v_i]$$

$$\mathbb{E}[u_i(b_i,\sigma(v_j),v_i)|v_i] = \int_0^{\sigma^{-1}(b_i)} (v_i - \sigma(v_j)) dv_j$$

• La condición de primer orden es que:

$$\frac{\partial \mathbb{E}[u_i(b_i,\sigma(v_j),v_i)|v_i]}{\partial b_i} = 0$$

Por el Teorema Fundamental del Cálculo:

$$(\sigma^{-1}(b_i))'(v_i - \sigma(\sigma^{-1}(b_i))) = 0$$

- Como σ es invertible, se obtiene que entonces: $v_i = b_i$.
- Sigue que el par (σ, σ) con $\sigma(v_i) = v_i$ conforma un EB del juego.

Primer precio: Los participantes simultáneamente ofrecen sumas $b_i \ge 0$. El ganador es el participante con la mayor oferta, que obtiene el bien y paga su oferta. El otro participante no obtiene el bien y no paga nada.

Segundo precio: Los participantes ofrecen simultáneamente sumas $b_i \ge 0$. El ganador es el participante con la mayor oferta, que obtiene el bien, pero paga la oferta del perdedor. El otro participante no obtiene el bien y no paga nada.

• Las estrategias de equilibrio que encontramos eran:

Primer precio: Los participantes simultáneamente ofrecen sumas $b_i \ge 0$. El ganador es el participante con la mayor oferta, que obtiene el bien y paga su oferta. El otro participante no obtiene el bien y no paga nada.

Segundo precio: Los participantes ofrecen simultáneamente sumas $b_i \ge 0$. El ganador es el participante con la mayor oferta, que obtiene el bien, pero paga la oferta del perdedor. El otro participante no obtiene el bien y no paga nada.

• Las estrategias de equilibrio que encontramos eran: Primer precio: $\sigma(v):[0,1] \to [0,\frac{1}{2}]$ dada por $\sigma(v)=\frac{v}{2}$.

Primer precio: Los participantes simultáneamente ofrecen sumas $b_i > 0$. El ganador es el participante con la mayor oferta, que obtiene el bien y paga su oferta. El otro participante no obtiene el bien y no paga nada.

Segundo precio: Los participantes ofrecen simultáneamente sumas $b_i > 0$. El ganador es el participante con la mayor oferta, que obtiene el bien, pero paga la oferta del perdedor. El otro participante no obtiene el bien y no paga nada.

• Las estrategias de equilibrio que encontramos eran: Primer precio: $\sigma(v): [0,1] \to [0,\frac{1}{2}]$ dada por $\sigma(v) = \frac{v}{2}$. Segundo precio: $\sigma(v): [0,1] \to [0,1]$ dada por $\sigma(v) = v$.

Primer precio: Los participantes simultáneamente ofrecen sumas $b_i \ge 0$. El ganador es el participante con la mayor oferta, que obtiene el bien y paga su oferta. El otro participante no obtiene el bien y no paga nada.

Segundo precio: Los participantes ofrecen simultáneamente sumas $b_i \ge 0$. El ganador es el participante con la mayor oferta, que obtiene el bien, pero paga la oferta del perdedor. El otro participante no obtiene el bien y no paga nada.

- Las estrategias de equilibrio que encontramos eran: Primer precio: $\sigma(v):[0,1] \to [0,\frac{1}{2}]$ dada por $\sigma(v)=\frac{v}{2}$. Segundo precio: $\sigma(v):[0,1] \to [0,1]$ dada por $\sigma(v)=v$.
- ¿Qué nos dicen estas estrategias?

 Primer precio: los participantes esconden parte de su valoración.

 Segundo precio: los participantes revelan exactamente su valoración.

Primer precio: Los participantes simultáneamente ofrecen sumas $b_i \ge 0$. El ganador es el participante con la mayor oferta, que obtiene el bien y paga su oferta. El otro participante no obtiene el bien y no paga nada.

Segundo precio: Los participantes ofrecen simultáneamente sumas $b_i \ge 0$. El ganador es el participante con la mayor oferta, que obtiene el bien, pero paga la oferta del perdedor. El otro participante no obtiene el bien y no paga nada.

- Las estrategias de equilibrio que encontramos eran: Primer precio: $\sigma(v):[0,1] \to [0,\frac{1}{2}]$ dada por $\sigma(v)=\frac{v}{2}$. Segundo precio: $\sigma(v):[0,1] \to [0,1]$ dada por $\sigma(v)=v$.
- ¿Qué nos dicen estas estrategias?
 Primer precio: los participantes esconden parte de su valoración.
 Segundo precio: los participantes revelan exactamente su valoración.
- ¿Qué pasa con la eficiencia?
 Notar que en ambos casos los equilibrios son eficientes: quién tiene mayor valoración por el bien es quien se lo lleva en equilibrio.

Primer precio: Los participantes simultáneamente ofrecen sumas $b_i \ge 0$. El ganador es el participante con la mayor oferta, que obtiene el bien y paga su oferta. El otro participante no obtiene el bien y no paga nada.

Segundo precio: Los participantes ofrecen simultáneamente sumas $b_i \geq 0$. El ganador es el participante con la mayor oferta, que obtiene el bien, pero paga la oferta del perdedor. El otro participante no obtiene el bien y no paga nada.

- Las estrategias de equilibrio que encontramos eran: Primer precio: $\sigma(v):[0,1] \to [0,\frac{1}{2}]$ dada por $\sigma(v)=\frac{v}{2}$. Segundo precio: $\sigma(v):[0,1] \to [0,1]$ dada por $\sigma(v)=v$.
- ¿Qué nos dicen estas estrategias?
 Primer precio: los participantes esconden parte de su valoración.
 Segundo precio: los participantes revelan exactamente su valoración.
- ¿Qué pasa con la eficiencia?
 Notar que en ambos casos los equilibrios son eficientes: quién tiene mayor valoración por el bien es quien se lo lleva en equilibrio.
- ¿Qué ocurre con los excedentes? En ambos casos, quién se lleva el bien termina con excedente (paga bajo su valoración). Los agentes tienen **poder de mercado**. ¿Qué pasa si hubieran más jugadores?

Primer precio: Los participantes simultáneamente ofrecen sumas $b_i \ge 0$. El ganador es el participante con la mayor oferta, que obtiene el bien y paga su oferta. El otro participante no obtiene el bien y no paga nada.

Segundo precio: Los participantes ofrecen simultáneamente sumas $b_i \ge 0$. El ganador es el participante con la mayor oferta, que obtiene el bien, pero paga la oferta del perdedor. El otro participante no obtiene el bien y no paga nada.

- Las estrategias de equilibrio que encontramos eran: Primer precio: $\sigma(v):[0,1] \to [0,\frac{1}{2}]$ dada por $\sigma(v)=\frac{v}{2}$. Segundo precio: $\sigma(v):[0,1] \to [0,1]$ dada por $\sigma(v)=v$.
- ¿Qué nos dicen estas estrategias?
 Primer precio: los participantes esconden parte de su valoración.
 Segundo precio: los participantes revelan exactamente su valoración.
- ¿Qué pasa con la eficiencia? Notar que en ambos casos los equilibrios son **eficientes**: quién tiene mayor valoración por el bien es quien se lo lleva en equilibrio.
- ¿Qué ocurre con los excedentes? En ambos casos, quién se lleva el bien termina con excedente (paga bajo su valoración). Los agentes tienen **poder de mercado**. ¿Qué pasa si hubieran más jugadores?
- ¿Qué pasa con el ingreso del subastador? Primer precio: $I = \mathbb{E}\left[\max\{\frac{v_1}{2},\frac{v_2}{2}\}\right] = \frac{1}{3}$ Segundo precio: $I = \mathbb{E}\left[\min\{v_1,v_2\}\right] = \frac{1}{3}$