

Auxiliar 5

Profesor: Juan Escobar

Auxiliares: Leonel Huerta, Javier Moreno & Rafael Tiara

Problemas

P1. Considere los siguientes juegos descritos por las siguientes matrices de pagos:

	${ m L}$	\mathbf{M}	\mathbf{R}
Τ	0, 10	-2, -1	-2, -2
U	1, 1	0, 3	2, 2
D	-1, -1	2, 2	4, 1
В	7, 4	1, 5	3, 3

$$\begin{array}{c|ccccc} & L & M & R \\ S & 1, 2 & 0, 0 & 0, 4 \\ O & 0, 0 & 2, 1 & 2, 1 \end{array}$$

- (a) Determine los equilibrios de Nash en cada juego.
- (b) Realice la eliminación iterada de estrategias y obtenga los equilibrios encontrados en la parte anterior.
- P2. Basado en el paper de Hotelling, Stability in Competition de 1928. Competencia de Bertrand con productos diferenciados.
 - Dos firmas
 - El espacio del producto es [0, 1]
 - Cada firma tiene un producto: a para 1, 1 b para 2, con a < 1 b
 - El costo por unidad es c para ambas firmas
 - Consumidores tienen un indice $\theta \in [0, 1]$
 - Cada consumidor compra una unidad. Consumidor tipo θ tiene un pago v p $t(x \theta)^2$ si compra un producto tipo x a un precio p.
 - La distribución de θ es uniforme en [0, 1]
 - (a) Para a y (1 b) dados, calcule el Equilibrio de Nash del juego.

- (b) Sea $p_1 = p_2 = p$. Suponga que ambas firmas pueden escoger donde localizarse a lo largo de [0,1] y, además, $a + b \le 1$. Encuentre las localizaciones de equilibrio. Asuma que si las firmas comparten demanda, esta es repartida de forma equitativa.
- P3. Basado en el paper de Cornes del Quarterly Journal of Economics de 1993. Suponga que hay k individuos y que cada uno posee m unidades de un bien. El individuo debe distribuir sus unidades entre lo que consume y, y lo que dona q para un bien público. La cantidad total del bien público es $Q = \sum_{1}^{k} q_{i}$. La función de utilidad de cada individuo es u(y, Q) = yQ.
 - a) Escribir este juego en forma normal.
 - b) Encontrar el único equilibrio de Nash en que $q_i = q_j$ para todo i y j.
 - c) Encuentre la única asignación Pareto Óptima. Esto es, hay que maximizar la utilidad del individuo 1, sujeto a la cantidad de bienes que hay en la economía, y que las utilidades de los otros individuos sean mayores o iguales que u_i .
 - d) Muestre que el ratio entre la cantidad en el equilibrio de Nash, y la cantidad en la asignación Pareto Óptima decrece con el número de individuos (el problema de free riding se agrava cuando crece la población).