
Chapter One

Choice, Preference, and Utility

Most people, when they think about microeconomics, think first about the slogan
supply equals demand and its picture, shown here in Figure 1.1, with a rising supply
function intersecting a falling demand function, determining an equilibrium price
and quantity.
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Figure 1.1. Supply equals demand

But before getting to this picture and the concept of an equilibrium, the pic-
ture’s constituent pieces, the demand and supply functions, are needed. Those
functions arise from choices, choices by firms and by individual consumers. Hence,
microeconomic theory begins with choices. Indeed, the theory not only begins
with choices; it remains focused on them for a very long time. Most of this vol-
ume concerns modeling the choices of consumers, with some attention paid to the
choices of profit-maximizing firms; only toward the end do we seriously worry
about equilibrium.

1.1. Consumer Choice: The Basics
The basic story of consumer choice is easily told: Begin with a set X of possible
objects that might be chosen and an individual, the consumer, who does the choosing.
The consumer faces limits on what she might choose, and so we imagine some
collection A of nonempty subsets of X from which the consumer might choose.
We let A denote a typical element of A ; that is, A is a subset of X . Then the choices
of our consumer are denoted by c(A) .
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The story is that the consumer chooses one element of A . Nonetheless, we
think of c(A) as a subset of A , not a member or element of A . This allows for the
possibility that the consumer is happy with any one of several elements of A , in
which case c(A) lists all those elements. When she makes a definite choice of a
single element, say x , out of A—when she says, in effect, “I want x and nothing
else”—wewrite c(A) = {x} , or the singleton set consisting of the single element x .
But if she says, “I would be happy with either x or y ,” then c(A) = {x, y} .

So far, no restrictions have been put on c(A) . But some restrictions are natural.
For instance, c(A) ✓ A seems obvious; we do not want to give the consumer a
choice out of A and have her choosing something that is not in A . Youmight think
that we would insist on c(A) /= ; ; that is, the consumer makes some choice. But we
do not insist on this, at least, not yet. Therefore . . .

A model of consumer choice consists of some set X of possible objects of choice, a
collection A of nonempty subsets of X , and a choice function c whose domain is A
and whose range is the set of subsets of X , with the sole restriction that c(A) ✓ A .

For instance, we can imagine a world of k commodities, where a commodity
bundle is a vector x = (x1, . . . , xk) 2 Rk

+ , the positive orthant in k -dimensional Eu-
clidean space. (In this book, the positive orthantmeans all components nonnegative,
or Rk

+ = {x 2 Rk : x � 0} . The strict positive orthant, denoted by Rk
++ , means ele-

ments of Rk all of whose components are strictly positive.) If, say, k = 3 and the
commodities are (in order) bread, cheese, and salami, the bundle (3, 0, 0.5) means
3 units of bread, no cheese, and 0.5 units of salami, in whatever units we are us-
ing. We can also imagine prices pi for the commodities, so that p = (p1, . . . , pk)
is the price vector; for convenience, we assume that all prices are strictly positive,
or p 2 Rk

++ . And we can imagine that the consumer has some amount of income
y � 0 to spend. Then the consumer’s choice problem is to choose some affordable
bundle given these prices and her income; that is, a typical set A is a budget set

{x 2 Rk
+ : p · x  y}.

Amodel of consumer choice in this context is then a choice function that sayswhich
bundles the consumer would be willing to accept, as a function of the prices of the
goods p and her level of income y .

This is not much of a model, yet. Economic modeling begins with an assump-
tion that the choices made by the consumer in different situations are somewhat
coherent. Imagine, for instance, a customer at a café asking for a cup of coffee and
a piece of pie. When told that they have apple and cherry pie, she opts for apple.
Then the waiter tells her that they also have peach pie. “If you also have peach,”
she responds, “I would like cherry pie, please.” We want to (and will) assume that
choice in different situations is coherent enough to preclude this sort of behavior;
we’ll formalize this next page, in Definition 1.1b.

This is one sort of coherence. A second is that the consumer’s choices are in
accord with utility maximization, for some utility function defined on X . That is,
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there is a function u : X ! R , such that for every A ,

c(A) = {x 2 A : u(x) � u(y) for all y 2 A}. (1.1)

A third sort of coherence involves a preference relation over X . A preference relation
expresses the consumer’s feelings between pairs of objects in X . We denote the
preference relation by ⌫ and imagine that for every pair x and y from X , the
consumer is willing to say that either x ⌫ y , meaning x is at least as good as y , or
not. For any pair x and y , then, one of four mutually exclusive possibilities holds:
(1) the consumer says that x ⌫ y and that y ⌫ x ; (2) x ⌫ y but not y ⌫ x ; (3) y ⌫ x
but not x ⌫ y ; or (4) neither x ⌫ y nor y ⌫ x . Then, with these preferences in
hand, a consumer chooses from a set A precisely those elements of A that are at
least as good as everything in A , or

c(A) = {x 2 A : x ⌫ y for all y 2 A}. (1.2)

When you look at (most) models in microeconomics that have consumers, con-
sumersmake choices, and the choice behavior of the consumer ismodeled by either
(1) a utility function and the (implicit) assumption that choice from any set A is
governed by the rule (1.1) or (2) a preference relation and the (implicit) assumption
that choice from any set A is governed by the rule (1.2). (Discrete choice models in
econometrics have so-called randomutilitymodels, inwhich choices are stochastic.
And in some parts of behavioral economics, you will find models of choice behav-
ior that don’t quite fit either of these frameworks. But most models have either
utility-maximizing or preference-maximizing consumers.)

The questions before us in this chapter are: How do these different ways of
modeling consumer choice compare? If we restrict attention to coherent choice,
does one imply the other(s)? Can they be made consistent?

The basic answer is that under certain coherence assumptions, the three ways of
modeling consumer choice are equivalent. We begin with the case of finite X . (We
worry a lot about infinite X later.) To keep matters simple, we make the following
assumption for the remainder of this chapter (but see Problems 1.15 and 1.16).

Assumption. A is the set of all nonempty subsets of X .

Two properties of choice functions and two properties of a preference relation
must be defined:

Definition 1.1.
a. A choice function c satisfies finite nonemptiness if c(A) is nonempty for every finite

A 2 A .

b. A choice function c satisfies choice coherence if, for every pair x and y from X and
A and B from A , if x, y 2 A \B , x 2 c(A) , and y 62 c(A) , then y 62 c(B) .

c. A preference relation on X is complete if for every pair x and y from X , either x ⌫ y
or y ⌫ x (or both).
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d. A preference relation on X is transitive if x ⌫ y and y ⌫ z implies that x ⌫ z .

Somecomments about thesedefinitionsmaybehelpful: Concerninga, if X is finite,
finite nonemptiness of c means that c(A) is nonempty for all subsets of X . Later in
the chapter, the restriction to finite A will have a role to play. Choice coherence is
the formalization intended to preclude the apple, cherry, and peach pie vignette: If
apple is the (sole) choice out of {apple, cherry} , then cherry cannot be chosen from
{apple, cherry, peach} . An equivalent (contrapositive) form for b is: For every pair
x and y from X and A and B from A , if x, y 2 A \B , x 2 c(A) , and y 2 c(B) , then
y 2 c(A) and x 2 c(B) . 1

Proposition 1.2. Suppose that X is finite.

a. If a choice function c satisfies finite nonemptiness and choice coherence, then there exist
both a utility function u : X ! R and a complete and transitive preference relation ⌫
that produce choices according to c via the formulas (1.1) and (1.2), respectively.

b. If a preference relation ⌫ on X is complete and transitive, then the choice function it
produces via formula (1.2) satisfies finite nonemptiness and choice coherence, and there
exists a utility function u : X ! R such that

x ⌫ y if and only if u(x) � u(y). (1.3)

c. Given any utility function u : X ! R , the choice function it produces via formula (1.1)
satisfies finite nonemptiness and choice coherence, the preference relation it produces
via (1.3) is complete and transitive, and the choice function produced by that preference
relation via (1.2) is precisely the choice function produced directly from u via (1.1).

In words, choice behavior (for a finite X ) that satisfies finite nonemptiness and
choice coherence is equivalent to preference maximization (that is, formula (1.2))
for complete and transitive preferences, both ofwhich are equivalent to utilitymax-
imization (via formulas (1.1) and (1.3)). However expressed, whether in terms of
choice, preference, or utility, this conglomerate (with the two pairs of assumptions)
is the standard model of consumer choice in microeconomics.

A much-used piece of terminology concerns display (1.3), which connects a
utility function u and a preference relation ⌫ . When (1.3) holds, we say that the
utility function u represents the preference relation ⌫ .

In terms of economics, Proposition 1.2 is the story of this chapter. Several tasks
remain:

1. We prove the proposition.

1 If it isn’t clear to you that this restatement is equivalent to b in the definition, you should verify
it carefully. Stated in this alternative form, Mas-Colell, Whinston, and Green (1995) call property b the
weak axiom of revealed preference, although their setting is a bit different; cf. Problem 1.15. In previous
books, I have called property b Houthakker’s Axiom of Revealed Preference, but I no longer believe this is
a correct attribution; the first appearance of this property for choice out of general sets (that is, outside
the context of price-and-income-generated budget sets) of which I am aware is Arrow (1959).
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2. We consider how (and whether) this proposition extends to infinite X . After
all, in the one example we’ve given, where X = Rk

+ , we have an infinite X .
Most economic applications will have an infinite X .

3. We have so far discussed the binary relation ⌫ , known asweak preference, which
is meant to be an expression of “at least as good as.” In economic applications,
two associated binary relations, strict preference (“strictly better than”) and indif-
ference (“precisely as good as”) are used; we explore them and their connection
to weak preference.

4. We comment briefly on aspects of the standard model: What if A does not
contain all nonempty subsets of X ? What is the empirical evidence for or
against the standardmodel? What alternatives are there to the standardmodel?

1.2. Proving Most of Proposition 1.2, and More
Parts of Proposition 1.2 are true for all X , finite or not.

Proposition 1.3. Regardless of the size of X , if u : X ! R , then

a. the preference relation ⌫u defined by x ⌫u y if u(x) � u(y) is complete and transitive,
and

b. the choice function cu defined by cu(A) = {x 2 A : u(x) � u(y) for all y 2 A}
satisfies finite nonemptiness and choice coherence.

Proof. (a) Given any two x and y from X , either u(x) � u(y) or u(y) � u(x) (since
u(x) and u(y) are two real numbers); hence either x ⌫u y or y ⌫u x . That is, ⌫u is
complete.

If x ⌫u y and y ⌫u z , then (by definition) u(x) � u(y) and u(y) � u(z) ; hence
u(x) � u(z) (because � is transitive for real numbers), and therefore x ⌫u z . That
is, ⌫u is transitive.

(b) Suppose x, y 2 A\B and x 2 cu(A) . Then u(x) � u(y) . If, moreover, y 62 cu(A) ,
then u(z) > u(y) for some z 2 A . But u(x) � u(z) since x 2 cu(A) implies u(x) �
u(z) for all z 2 A ; therefore u(x) > u(y) . Since x 2 B , this immediately implies
that y 62 cu(B) , since there is something in B , namely x , for which u(y) 6� u(x) .
This is choice coherence.

If A is a finite subset of X , then {r 2 R : r = u(x) for some x 2 A} is a finite set
of real numbers. Every finite set of real numbers contains a largest element; that is,
some r⇤ = u(x⇤) in the set satisfies r⇤ � r for all the elements of the set. But this
says that u(x⇤) � u(x) for all x 2 A , which implies that x⇤ 2 cu(A) , and cu(A) is
not empty.

Proposition 1.4. Regardless of the size of X , if ⌫ is a complete and transitive binary
relation on X , the choice function c⌫ defined on the set of all nonempty subsets of X by

c⌫(A) := {x 2 A : x ⌫ y for all y 2 A}



6 Chapter One: Choice, Preference, and Utility

satisfies finite nonemptiness and choice coherence.

Proof. Suppose x, y 2 A \ B, x 2 c⌫(A) , and y 62 c⌫(A) . Since x 2 c⌫(A) , x ⌫ y .
Since y 62 c⌫(A) , y 6⌫ z for some z 2 A . By completeness, z ⌫ y . Since x 2 c⌫(A) ,
x ⌫ z . I claim that y 6⌫ x : Assume to the contrary that y ⌫ x , then x ⌫ z and
transitivity of ⌫ would imply that y ⌫ z , contrary to what was assumed. But if
y 6⌫ x , then since x 2 B , y 62 c⌫(B) . That is, c⌫ satisfies choice coherence.

I assert that if A is a finite (and nonempty) set, some x 2 A satisfies x ⌫ y for
all y 2 A (hence c⌫(A) is not empty). The proof is by induction2 on the size of A :
if A contains a single element, say, A = {x} , then x ⌫ x because ⌫ is complete.
Therefore, the statement is true for all sets of size 1. Assume inductively that the
statement is true for all sets of size n�1 and let A be a set of size n . Take any single
element x0 from A , and let A0 = A \ {x0} . A0 is a set of size n� 1, so there is some
x0 2 A0 such that x0 ⌫ y for all y 2 A0 . By completeness of ⌫ , either x0 ⌫ x0 or
x0 ⌫ x0 . In the first case, x0 ⌫ y for all y 2 A , and we are done. In the second case,
x0 ⌫ x0 by completeness, and x0 ⌫ y for all y 2 A0 , since x0 ⌫ y , and therefore
transitivity of ⌫ tells us that x0 ⌫ y . Hence, for this arbitrary set of size n , we have
produced an element at least as good as every other element. This completes the
induction step, proving the result.

Proposition 1.5. Regardless of the size of X , suppose the choice function c satisfies finite
nonemptiness and choice coherence. Define a binary relation ⌫c on X by

x ⌫c y if x 2 c({x, y}).

Define a new choice function c⌫c by

c⌫c(A) = {x 2 A : x ⌫c y for all y 2 A}.

Then ⌫c is complete and transitive, c⌫c satisfies choice coherence and finite nonemptiness,
and for every subset A of X , either

c(A) = ; or c(A) = c⌫c(A).

Before proving this, please note an instant corollary: If X is finite and c satisfies
finite nonemptiness, then c(A) /= ; for all A ✓ X , and hence c(A) = c⌫c(A) for all
A .

Proof of Proposition 1.5. Since c satisfies finite nonemptiness, either x 2 c({x, y}) or
y 2 c({x, y}) ; hence either x ⌫c y or y ⌫c x . That is, ⌫c is complete.

Suppose x ⌫c y and y ⌫c z . I assert that choice coherence implies that x 2
c({x, y, z}) . Suppose to the contrary that this is not so. It cannot be that y 2

2 See Appendix 1.
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c({x, y, z}) , for if it were, then x could not be in c({x, y}) by choice coherence: Take
A = {x, y, z} and B = {x, y} ; then x, y 2 A \ B , y 2 c(A) , x 62 c(A) , and hence
choice coherence implies that x 62 c(B) , contrary to our original hypothesis. And
then, once we know that y 62 c({x, y, z}) , choice coherence can be used again to
imply that z 62 c({x, y, z}) : Now y, z 2 {x, y, z} \ {y, z} , and if z 2 c({x, y, z}) ,
since we know that y 62 c({x, y, z}) , this would imply y 62 c({y, z}) , contrary to
our original hypothesis. But if x , y , and z are all not members of c({x, y, z}) , then
it is empty, contradicting finite nonemptiness. Hence, we conclude that x must
be a member of c({x, y, z}) . But then choice coherence and finite nonemptiness
together imply that x 2 c({x, z}) , for if it were not, z must be in c({x, z}) , and
choice coherencewould imply that x cannot be amember of c({x, y, z}) . Hencewe
now conclude that x 2 c({x, z}) , which means that x ⌫c z , and ⌫c is transitive.

Since ⌫c is complete and transitive, we know from Proposition 1.4 that c⌫c

satisfies finite nonemptiness and choice coherence.
Now take any set A and any x 2 c(A) . Let y be any other element of A . By

finite nonemptiness and choice coherence, x must be in c({x, y}) , because, if not,
then y is the sole element of c({x, y}) and, by choice coherence, x cannot be an
element of c(A) . Therefore, x ⌫c y . This is true for everymember y of A ; therefore
x 2 c⌫c(A) . That is, c(A) ✓ c⌫c(A) .

Finally, suppose x 2 c⌫c(A) and that c(A) is nonempty. Let x0 be somemember
c(A) . By the definition of c⌫c , x ⌫c x0 , which is to say that x 2 c({x0, x}) . But then
x 62 c(A) is a violation of choice coherence. Therefore, x 2 c(A) , and (assuming
c(A) is nonempty) c⌫c(A) ✓ c(A). This completes the proof.

1.3. TheNo-Better-Than Sets andUtility Representations
If you carefully put all the pieces from Section 1.2 together, you see that, to finish
the proof of Proposition 1.2, we must show that for finite X , if c satisfies finite
nonemptiness and choice coherence, someutility function u gives c via the formula
(1.1), and if ⌫ is complete and transitive, some utility function u represents ⌫ in
the sense of (1.3). Wewill get there bymeans of an excursion into the no-better-than
sets.

Definition 1.6. For a preference relation ⌫ defined on a set X (of any size) and for x a
member of X , the no-better-than x set, denoted NBT(x) , is defined by

NBT(x) = {y 2 X : x ⌫ y}.

In words, y is no better than x if x is at least as good as y . We define NBT(x) for
any preference relation ⌫ , but we are mostly interested in these sets for complete
and transitive ⌫ , in which case the following result pertains.
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Proposition 1.7. If ⌫ is complete and transitive, then NBT(x) is nonempty for all x . In
particular, x 2 NBT(x) . Moreover, x ⌫ y if and only if NBT(y) ✓ NBT(x) , and if x ⌫ y
but y 6⌫ x , then NBT(y) is a proper subset of NBT(x) . Therefore, the collection of NBT
sets nest; that is, if x and y are any two elements of X , then either NBT(x) is a proper
subset of NBT(y) , or NBT(y) is a proper subset of NBT(x) , or the two are equal.

This is not hard to prove, so I leave it to you in case you need practice with these
sorts of exercises in mathematical theorem proving.

Proposition 1.8. If X is a finite set and ⌫ is complete and transitive, then the function
u : X ! R defined by

u(x) = the number of elements ofNBT(x)

satisfies u(x) � u(y) if and only if x ⌫ y .

Proof. This is virtually a corollary of the previous proposition, but since I failed to
give you the proof of that proposition, I spell this one out. Suppose x ⌫ y . Then
by Proposition 1.7, NBT(y) ✓ NBT(x) , so u(y)  u(x) ; that is, u(x) � u(y) .

Conversely, suppose u(x) � u(y) . Then there are least as many elements of
NBT(x) as there are of NBT(y) . But, by Proposition 1.7, these sets nest; hence
NBT(y) ✓ NBT(x) . Of course, y 2 NBT(y) , abd hence y 2 NBT(x) so x ⌫ y .

To finish off the proof of Proposition 1.2, we need to produce a utility function
u from a choice function c in the case of finite X . Here is oneway to do it: Assume
X is finite and c is a choice function on X that satisfies finite nonemptiness and
choice coherence. Use c to generate a preference relation ⌫c , which is immediately
complete and transitive. Moreover, if c⌫c is choice generated from ⌫c , we know
(since X is finite; hence c(A) is nonempty for every A) that c⌫c is precisely c).
Use the construction just given to produce a utility function u that represents ⌫c .
Because, for any A ,

c(A) = c⌫c(A) = {x 2 A : x ⌫c y for all y 2 A},

we know immediately that

c(A) = c⌫c(A) = {x 2 A : u(x) � u(y) for all y 2 A}.

Done.

Although a lot of what is proved in this section and in Section 1.2 works for any
set X , in two places we rely on the finiteness of X .

1. In the proof of Proposition 1.8, if NBT(x) can be an infinite set, defining u(x) to
be the number of elements of NBT(x) does not work.



1.4. Strict Preference and Indifference 9

2. In several places, when dealing with choice functions, we had to worry about
c(A) = ; for infinite A . We could have added an assumption that c(A) is never
empty, but for reasons to be explained, that is a bad idea.

We deal with both these issues in Sections 1.5 and 1.6, respectively, but to help with
the exposition, we first take up issues related to preference relations.

1.4. Strict Preference and Indifference
In terms of preferences, the standard theory of choice deals with a complete and
transitive binary relation ⌫ , often called weak preference. The statement x ⌫ y
means that the consumer judges x to be at least as good as y ; that is, either x and
y are equally good or x is better than y .

For any pair x and y , completeness implies that of the four mutually exclusive
possibilities ennumerated in the first paragraph of page 3, one of the first three
must hold, namely

1. both x ⌫ y and y ⌫ x , or

2. x ⌫ y but not y ⌫ x , or

3. y ⌫ x but not x ⌫ y .

In case 1, we say that the consumer is indifferent between x and y and write x ⇠ y .
In case 2, we say that x is strictly preferred to y and write x � y . And in case 3, y
is strictly preferred to x , written y � x .

Proposition 1.9. Suppose weak preference ⌫ is complete and transitive. Then

a. x � y if and only if it is not the case the y ⌫ x .

b. Strict preference is asymmetric: If x � y , then it is not the case that y � x .

c. Strict preference is negatively transitive: If x � y , then for any third element z ,
either z � y or x � z .

d. Indifference is reflexive: x ⇠ x for all x .

e. Indifference is symmetric: If x ⇠ y , then y ⇠ x .

f. Indifference is transitive: If x ⇠ y and y ⇠ z , then x ⇠ z .

g. If x � y and y ⌫ z , then x � z . If x ⌫ y and y � z , then x � z .

h. Strict preference is transitive: If x � y and y � z , then x � z .

Proof. Asymmetry of strict preference is definitional: x � y if x ⌫ y and not
y ⌫ x , either of which implies not y � x . Indifference is reflexive because ⌫ is
complete; hence x ⌫ x for all x . Indifference is symmetric because the definition
of indifference is symmetric. Indifference is transitive because ⌫ is transitive: If
x ⇠ y and y ⇠ z , then x ⌫ y , y ⌫ z , z ⌫ y , and y ⌫ x , and hence x ⌫ z and
z ⌫ x , so x ⇠ z . This leaves a, c, g, and h to prove.
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For g, if x � y then x ⌫ y . If in addition y ⌫ z , then x ⌫ z by transitivity.
Suppose z ⌫ x . Then by transitivity of ⌫ , y ⌫ z ⌫ x implies y ⌫ x , contradicting
the hypothesis that x � y . Therefore, it is not true that z ⌫ x , and hence x � z .
The other half is similar.

For h, if x � y and y � z , then y ⌫ z . Apply part g.
For a, if x � y , then x ⌫ y and not y ⌫ x by definition, so in particular not

y ⌫ x . Conversely, not y ⌫ x implies x ⌫ y by completeness of ⌫ , and these two
together are x � y by the definition of � .

For c, suppose x � y but not z � y . By part a, the second is equivalent to y ⌫ z ,
and then x � z by part g.

We beganwithweak preference ⌫ and used it to define strict preference � and
indifference ⇠ . Other textbooks beginwith strict preference � as the primitive and
use it to define weak preference ⌫ and indifference ⇠ . While the standard theory
is based on a complete and transitiveweak preference relation, it could equallywell
be based on strict preference that is asymmetric and negatively transitive:

Proposition 1.10. Suppose a binary relation � is asymmetric and negatively transitive.
Define ⌫ by x ⌫ y if not y � x , and define ⇠ by x ⇠ y if neither x � y nor y � x .
Then ⌫ is complete and transitive, and if we defined ⇠0 and �0 from ⌫ according to the
rules given previously, ⇠0 would be the same as ⇠ , and �0 would be the same as � .

Proving this makes a good exercise and so is left as Problem 1.9.

1.5. Infinite Sets and Utility Representations
This section investigates the following pseudo-proposition:

If ⌫ is a complete and transitive binary relation on an arbitrary set X , then some function
u : X ! R can be found that represents ⌫ ; that is, such that x ⌫ y if and only if
u(x) � u(y) .

Proposition 1.3 tells us the converse: If ⌫ is represented by some utility function u ,
then ⌫ must be complete and transitive. But is the pseudo-proposition true? The
answer is no, of course; we would not call this a pseudo-proposition if the answer
were yes. I do not give the standard counterexample here; it is found in Problem
1.10.

Rather than give the standard counterexample, we look for fixes. The idea is to
add some assumptions on preferences or on X or on both together that make the
proposition true. The first fix is quite simple.

Proposition 1.11. If ⌫ is a complete and transitive binary relation on a countable
set X , then for some function u : X ! R , u(x) � u(y) if and only if x ⌫ y .

(A set X is countable if its elements can be enumerated; that is, if there is a way
to count them with the positive integers. All finite sets are countable. The set of



1.5. Infinite Sets and Utility Representations 11

integers is countable, as is the set of rational numbers. But the set of real numbers
is not countable or, in math-speak, is uncountable. Proving this is not trivial.)

Proof. Let {x1, x2, . . .} be an enumeration of the set X . Define d : X ! R by
d(xn) =

� 1
2

�n . Define, for each x ,

u(x) =
X

z2NBT(x)
d(z).

(The series { 12 ,
1
4 ,

1
8 , . . .} is absolutely summable, so the potentially infinite sum

being taken in the display is well defined. If you are unclear on this, you need
to review [I hope it is just a review!] the mathematics of sequences and series.)
Suppose x ⌫ y . Then NBT(y) ✓ NBT(x) , so the sum that defines u(x) includes all
the terms in the sum that defines u(y) and perhaps more. All the summands are
strictly positive, and therefore u(x) � u(y) .

Conversely,weknowthat theNBTsetsnest, andso u(x) � u(y) only if NBT(y) ✓
NBT(x) . Therefore u(x) � u(y) implies y 2 NBT(y) ✓ NBT(x) ; y 2 NBT(x) , and
hence x ⌫ y .

Compare the proofs of Propositions 1.8 and 1.11. In Proposition 1.8, the u(x)
is defined to be the size of the set NBT(x) . In other words, we add 1 for every
member of NBT(x) . Here, because that might get us into trouble, we add instead
terms that sum to a finite number, even if there are (countably) infinitely many of
them, making sure that the terms are all strictly positive so that more summands
means a bigger sum and so larger utility.

The hardpart is to go fromcountable sets X to uncountable sets. Avery general
proposition does this for us.

Proposition 1.12. Suppose ⌫ is a complete and transitive preference relation on a set X .
The relation ⌫ can be represented by a utility function if and only if some countable subset
X⇤ of X has the property that if x � y for x and y from X , then x ⌫ x⇤ � y for some
x⇤ 2 X⇤ .

Proof. Suppose X⇤ exists as described. Enumerate X⇤ as {x⇤1 , x⇤2 , . . .} and let
d(x⇤n) =

� 1
2

�n
. For each x 2 X , define

U (x) =
X

{x⇤2X⇤\NBT(x)}
d(x⇤).

If x ⌫ y , then NBT(y) ✓ NBT(x) ; hence NBT(y) \X⇤ ✓ NBT(x) \X⇤ . The sum
defining u(x) is over at least as large a set as the sum defining u(y) , and all the
summands are positive, so u(x) � u(y) .

To show the converse, we use the contrapositive: If not y ⌫ x , then not u(y) �
u(x) . Not y ⌫ x is equivalent to x � y , and not u(y) � u(x) is u(x) > u(y) . But
if x � y , then there is some x⇤ in X⇤ such that x ⌫ x⇤ � y . Hence x⇤ is in the
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sum that defines u(x) but not in the sum that defines u(y) . Otherwise, every term
in sum defining u(y) is in the sum defining u(x) (see the previous paragraph), and
therefore u(x) > u(y) .

You may wish to avoid on a first reading the proof that if ⌫ is represented by
the utility function u , then such a countable set X⇤ exists. This proof is somewhat
technical and filled with special cases.

Let {In} be an ennumeration of all closed intervals with rational endpoints;
that is, each In is an interval of the form [q

n
, q̄n] where q̄n > q

n
are rational

numbers. (The set of rational numbers is countable and the cross product of two
countable sets is countable.) Let u(X) denote the set of real numbers {r 2 R : r =
u(x) for some x 2 X} . Consider three possibilities:

1. If u(X) \ In is nonempty, pick some single x 2 X such that u(x) 2 In and call
this xn .

2. If u(X) \ In is empty, let r̄n = inf{r 2 u(X) : r > q̄n } . If u(x) = r̄n for some
x 2 X , choose one such x and call this xn .

3. If u(X) \ In is empty and r̄n /= u(x) for all x 2 X , then do not bother defining
xn .

Let X⇤ be the set of all xn created in cases 1 and 2. Since there are countablymany
intervals In and at most one xn is produced for each In , X⇤ is a countable set.

Now suppose x � y in X . Since u represents ⌫ , u(x) > u(y) . Choose some
rational number q in the open interval (u(y), u(x)) . Let r̄ = inf{r 2 u(X) : r > q} .
Clearly, u(x) � r̄ , since u(x) is in the set over which we are taking the infimum.
There are two cases:

1. If u(x) > r̄ , let q0 be some rational number such that u(x) > q0 > r̄ , and let n
be the index of the interval [q, q0] . By construction, u(X) \ [q, q0] /= ; (you may
have to think about that one for a minute); hence there is x⇤ 2 X⇤ , namely xn ,
with u(x⇤) 2 [q, q0] , which means u(x) > u(x⇤) > u(y) . Done.

2. If u(x) = r̄ , then let q0 be some rational number such that q > q0 > u(y) , and let
n be the index of the interval [q0, q] . If u(X) \ [q0, q] /= ; , then there is x⇤ 2 X⇤

with u(x) � q � u(x⇤) � q0 > u(y) , and therefore x ⌫ x⇤ � y . Alternatively,
if u(X) \ [q0, q] = ; , then the interval [q0, q] fits into category 2 above, and in
particular, there is some x⇤ 2 X⇤ , namely xn , such that u(x⇤) = r̄ = u(x) . But
for this x⇤ , u(x) = u(x⇤) > u(y) ; hence x ⌫ x⇤ � y . Once again, done.

Proposition 1.12 gives a necessary and sufficient condition that, in addition
to ⌫ being complete and transitive, provides for a utility representation. This
proposition is, therefore, the most general such proposition we can hope for. But
general or not, it is not hugely useful, because the condition—the existence of
the countable subset X⇤—is not very practical. How can you tell, in a particular
application, if such a countable subset exists?

For practical purposes, the usual method is to make topological assumptions
about X and ⌫ . To illustrate this method, and also to take care of the vast majority
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of applications you are likely to encounter in a career in economics, I’ll specialize to
the case where X = Rk

+ , with the interpretation that there are k commodities and
x 2 X is a bundle of goods. In this context, the following definition makes sense:

Definition 1.13. Complete and transitive preferences ⌫ on X = Rk
+ are continuous if,

for every pair x and y from X with x � y , we can find an ✏ > 0 such that for every
bundle x0 2 X that is less than ✏ distant from x and for every bundle y0 2 X that is less
than ✏ distant from y , x0 � y0 .

In this definition, the distance between two points is the length of the line segment
that joins them; that is, we use Euclidean distance.3

The idea is captured by Figure 1.2. If x � y , then of course x /= y . Denote
the distance between them by d . If we take a small enough ✏ , say ✏ equal to 1%
of d , then everything within ✏ of x will be very close to being as good as x , and
everything within ✏ of y will be very close to being as good (or bad) as y . Since
x � y , if we make the balls small enough, everything in the ball around x should
be strictly better than everything in the ball around y .

distance  d
x

y

Figure 1.2. Continuity of preferences. Suppose x � y , and the distance between
x and y is d . If preferences are continuous, we can put a ball around x and a ball
around y , where you should think of the diameters of the balls being small relative
to d , such that for all x0 in the ball around x and for all y0 in the ball around y ,
x0 � y0 .

This definition of continuity of ⌫ provides us with a very nice picture, Figure
1.2, but is neithermathematically elegant nor phrased inway that is useful in proofs
of propositions that assume continuouspreferences. The next proposition provides
some equivalent definitions that are both more elegant and, in many cases, more
useful.
3 This is the first time that the distance between two bundles ismentioned, so to be very explicit: Sup-

poseweare lookingat the twobundles (10, 20, 30) and (11, 18, 30) in R3 . Themost“natural”waytomea-
sure the distance between them is Euclideandistance, the square root of the sum of the squares of the dis-
tances for each component, or

p
(11� 10)2 + (20� 18)2 + (30� 30)2 =

p
1 + 4 + 0 =

p
5. But it is equiva-

lent in termsof all important topologicalproperties, tomeasure thedistanceas the sumof absolutevalues
of thedifferences, componentby component—in this case, |11�10|+|20�18|+|30�30| = 1+2+0 = 3—or
to measure the distance as the maximum of the absolute values of the differences, component by com-
ponent, or max{|11� 10|, |20� 18|, |30� 30|} = 2. For each of these distance measures, two bundles
are “close” if and only if they are close in value, component by component; this is what makes these
different ways of measuring distance topologically equivalent. It is sometimes useful to have these
different ways of measuring distance—so-called norms or metrics—because a particular proposition
may be easier to prove using one rather than the others. For more on this, and for many of the real
analytic prerequisites of this book, see Appendix 2.
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Proposition 1.14. Continuity of preferences ⌫ on Rk
+ imply the following, and any one

of the following imply that preferences ⌫ on Rk
+ are continuous. (Therefore, continuity of

preferences could equivalently be defined by any one of the following, each of which implies
all the others.)

a. If {xn} is a sequence from Rk
+ with xn ⌫ y for all n , and if limn!1 xn = x , then

x ⌫ y . If {xn} is a sequence from Rk
+ with y ⌫ xn for all n , and if limn!1 xn = x ,

then y ⌫ x .

b. If {xn} is a sequence from Rk
+ with limn!1 xn = x , and if x � y , then for all

sufficiently large n , xn � y . And if limn!1 xn = x , and y � x , then for all
sufficiently large n , y � xn .

c. For all x 2 Rk
+ , the sets NBT(x) and NWT(x) = {y 2 Rk

+ : y ⌫ x} are both closed
sets. (NWT is a mnemonic for No Worse Than.)

d. For all x 2 Rk
+ , the sets SBT(x) = {y 2 Rk

+ : y � x} and SWT(x) = {y 2 Rk
+ :

x � y} are both (relatively, in Rk
+ ) open sets. 4 (SBT is a mnemonic for Strictly Better

Than, and SWT stands for Strictly Worse Than.)

The proof of this proposition is left as an exercise, namely Problem 1.11. Providing
theproof is a gooddiagnostic test forwhether youunderstandconcepts of open and
closed sets and limits in Euclidean spaces. If you aren’t sure that you can provide
a proof, you should review these basic topological (or, if you prefer, analytical)
concepts until you can prove this proposition; I provide a written-out proof in the
Student’s Guide.

The reason for the definition is probably clear:

Proposition 1.15. If X = Rk
+ and preferences ⌫ are complete, transitive, and continuous

on X , then ⌫ can be represented by a utility function u ; that is, u(x) � u(y) if and only
if x ⌫ y .

Proof. The proof consists of showing that there is a countable subset X⇤ of X that
does the trick, in the sense of Proposition 1.12. For instance, let X⇤ be all bundles
x 2 X all of whose components are rational numbers. There are countably many
of these bundles. Suppose x � y . Look at the line segment that joins x to y ; that
is, look at bundles that are convex combinations of x and y , or bundles of the form
ax + (1 � a)y for a 2 [0, 1]. Let a1 = inf{a 2 [0, 1] : ax + (1 � a)y ⌫ x} . It is
easy to see that a1 > 0; we can put a ball of some size ✏ > 0 around y such that
every bundle in the ball is strictly worse than x , and for small enough a , convex
combinations ax + (1� a)y all lie within this ball. Let x1 denote a1x + (1� a1)y ; I

4 The set Y is relatively open in another set X if Y is the intersection of X and an open set in the
“host space” of X . Since ⌫ is assumed to be defined on Rk

+ , which is a closed set in Rk , we need
the notion of “relatively open” here. It is perhaps worth noting, in addition, that while Definition 1.13
and this proposition are constructed in terms of preferences ⌫ defined on Rk

+ , they both generalize to
binary relations defined on more general sets X . But if you are sophisticated enough to know what I
have in mind here, you probably already realized that (and just how far we can push this form of the
definition and the proposition).
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claim that x1 ⇠ x . To see this, consider the other two possibilities (both of which
entail a1 /= 1, of course): If x1 � x , then there is a ball of positive radius around
x1 such that everything in the ball is strictly preferred to x , but this would mean
that for some convex combinations ax + (1 � a)y with a < a1 , ax + (1 � a)y ⌫ x ,
contradicting the definition of a1 . And if x � x1 , then a ball of positive radius
around x1 will be such that everything in the ball is strictly worse than x . This ball
includes all convex combinations ax + (1 � a)y with a a bit bigger than a1 , again
contradicting the definition of a1 .

Since x1 ⇠ x , x1 � y . There is a ball of positive radius around x1 such that
everything in the ball is strictly better than y . This includes convex combinations
ax + (1 � a)y that have a slightly smaller than a1 . But by the definition of a1 , all
such convex combinations must be strictly worse than x . Therefore, we know for
some a2 less than a1 , and for x2 = a2x + (1 � a2)y , x � x2 � y . Now we are in
business. We can put a ball of positive radius around x2 such that everything in
the ball is strictly worse than x , and we can put a ball of positive radius around x2
such that everything in the ball is strictly better than y . Taking the smaller of these
two radii, everything z in a ball of that radius satisfies x � z � y . But any ball of
positive radius contains bundles all of whose components are rational; hence some
x⇤ 2 X⇤ satisfies x � x⇤ � y . Done.

This proof uses the original definition of continuity. Can you construct a more
elegant proof using one of the alternative characterizations of continuity of prefer-
ences given in Proposition 1.14?

Proposition 1.15 says that continuous preferences have a utility representation.
We might hope for something more, namely that continuous preferences have a
utility representationwhere the function u is itself continuous. Wehave not proved
this and, in fact, the utility functions that we are producing in this chapter are
wildly discontinuous. (See Problem 1.12.) In Chapter 2, we see how to get to the
more desirable state of affairs, where continuous preferences have a continuous
representation.

1.6. Choice from Infinite Sets
The second difficulty that infinite X poses for the standard theory concerns the
possibility that c(A) = ; for infinite sets A . One of the two properties of choice
functions that characterize the standard model is that c(A) is nonempty for finite
sets A ; we could simply require this of all sets A ; that is, assume away the problem.
But this is unwise: Suppose, for instance, that X = R2

+ , and define a utility function
u by u(x) = u((x1, x2)) = x1+x2 . Consider the subset of X givenby A = [0, 1)⇥[0, 1);
that is, A is the unit square, but with the north and east edges removed. The set
{x 2 A : u(x) � u(y) for all y 2 A} is empty; from this semi-open set, open on the
“good” sides, nomatterwhat point you choose, there is something better according
to u . If we insisted that c is nonempty valued for all A , we wouldn’t be consistent
with utilitymaximization for any strictly increasing utility function, at least for sets
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A like the one here.
A different approach is to define choice only for some subsets of X and, in

particular, to restrict the domain of c to subsets of X for which it is reasonable to
assume that choice is nonempty; then strengthen finite nonemptiness by dropping
its restriction to finite sets. See Problem 1.15 for more on this approach.

We can leave things as they are: Proposition 1.5 guarantees that if c satisfies
finite nonemptiness and choice coherence, then for infinite A ,

c(A) = ; or c(A) = c⌫c(A),

for ⌫c defined from c . As long as c(A) is not empty, it gives the “right” answer.
But still, it would be nice to know that c(A) is not empty for the appropriate sorts
of infinite sets A . For instance, if X is, say, Rk

+ and c generates continuous pref-
erences, c(A) should be nonempty for compact sets A , at least. (Why should this
be true? See Proposition 1.19.) And in any setting, suppose we have a set A that
contains x and that is a subset of NBT(x) . Then c(A) ought to be nonempty, since
it should contain x .

These are nice things to have, but they can’t be derived from finite nonempti-
ness and choice coherence; further assumptions will be needed to have them. To
demonstrate this, imagine that c is a well-behaved choice function; it satisfies finite
nonemptiness and choice coherence and is nonempty for all the “right” sorts of
infinite sets A . Modify c , creating c0 , by letting c0(A) = ; for an arbitrary collection
of infinite sets A . For instance, we could let c0(A) = ; for all compact sets that
contain some given x⇤ , or for all sets A that are countably infinite, or for all sets
that contain x⇤ or are countably infinite but not both. When I say “for an arbitrary
collection of infinite sets,” I mean “arbitrary.” Then c0 satisfies finite nonemptiness
(of course, since it is identical to c for such arguments) and choice coherence. The
latter is quite simple: Suppose x, y 2 A \ B , x 2 c0(A) , and y 62 c0(A) . Since
c0(A) /= ; , c0(A) = c(A) ; since c satisfies choice coherence, y 62 c(B) . If c0(B) /= ;
then c0(B) = c(B) and hence y 62 c0(B) . On the other hand, if c0(B) = ; , then
y 62 c0(B) .

There are lots of assumptions we can add to finite nonemptiness and choice
coherence, to ensure that c is well-behaved on infinite sets. But perhaps the most
general is the simplest. Beginwith a choice function c that satisfies finite nonempti-
ness andchoice coherence. Generate the correspondingpreference relation ⌫c . Use
that preference relation to generate, for each x 2 X , NBT⌫c(x) , where I’ve included
the subscript ⌫c to clarify that we are beginning with the choice function c . Then,

Assumption 1.16. If x 2 A ✓ NBT⌫c(x) , c(A) /= ; .

Let me translate this assumption into words: If faced with a choice from some set
A that contains an element x , such that everything in A is revealed to be no better
than x when pairwise comparisons are made (that is, x 2 c({x, y}) for all y 2 A),
then the consumer makes some choice out of A . (Presumably that choice includes
x , but we do not need to assume this; it will be implied by choice coherence.)
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Proposition 1.17. A choice function c that satisfies finite nonemptiness and choice coher-
ence is identical to choice generated by the preferences it generates—that is, c ⌘ c⌫c—if
and only if it satisfies Assumption 1.16.

Proof. Suppose c ⌘ c⌫c and A is a set with x 2 A ✓ NBT⌫c(x) . Then by the
definition of c⌫c , x 2 c⌫c(A) . Since c ⌘ c⌫c , this implies that c(A) is nonempty.
(Therefore, in fact, c(A) = c⌫c(A) by Proposition 1.5.) Conversely, suppose c sat-
isfies Assumption 1.16. Take any A . Either c⌫c(A) = ; or /= ; . In the first case,
c⌫c(A) = c(A) = ; by Proposition 1.5. In the second case, let x be any element of
c⌫c(A) . Then x 2 A and, by the definition of c⌫c , A ✓ NBT⌫c(x) . By Assumption
1.16, c(A) is nonempty, and Proposition 1.5 implies that c(A) = c⌫c(A) .

An interesting complement to Assumption 1.16 is the following.

Proposition 1.18. Suppose that c satisfies finite nonemptiness and choice coherence. If A
is such that, for every x 2 A,A 6✓ NBT⌫c(x) , then c(A) = ; .

That is, the collection of sets in Assumption 1.16 for which it is assumed a choice
is made is the largest possible collection of such sets, if choice is to satisfy finite
nonemptinessandchoicecoherence. Theproof is implicit in theproofofProposition
1.17: If c(A) /= ; , then c(A) = c⌫c(A) by Proposition 1.5, and for any x 2 c(A) =
c⌫c(A) , it is necessarily the case that A ✓ NBT⌫c(x) .

What about properties such as, c is nonempty valued for compact sets A? Let
me state a proposition, although I reserve the proof until Chapter 2 (see, however,
Problem 1.13):

Proposition1.19. SupposeX = Rk
+ . Take a choice function c that satisfiesfinitenonempti-

ness, choice coherence, and Assumption 1.16. If the preferences ⌫c generated from c are
continuous, then for any nonempty and compact set A, c(A) /= ; .

1.7. Equivalent Utility Representations
Suppose that ⌫ has autility representation u . What canwe sayaboutotherpossible
numerical representations?

Proposition 1.20. If u is a utility-function representation of ⌫ and f is a strictly
increasing function with domain and range the real numbers, then v defined by v(x) =
f (u(x)) is another utility-function representation of ⌫ .

Proof. This is obvious: If u and v are related in this fashion, then v(x) � v(y) if and
only if u(x) � u(y) .

The converse to this is untrue: That is, it is possible that v and u both represent
⌫ , but there is no strictly increasing function f : R ! R with v(x) = f (u(x)) for all
x . Instead, we have the following result.
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Proposition 1.21. The functions u and v are two utility-function representations of weak
preferences ⌫ if and only if there is a function f : R ! R that is strictly increasing on the
set {r 2 R : r = u(x) for some x 2 X} such that v(x) = f (u(x)) for all x 2 X . Moreover,
the function f can be taken to be nondecreasing if we extend its range to R [ {�1,1} .

Problem 1.14 asks you to prove this.
These results may seem technical only, but they make an important economic

point. Utility, at least as far as representingweakpreferences is concerned, is purely
ordinal. To compare utility differences, as in u(x)�u(y) > u(y)�u(z) , and conclude
that “x is more of an improvement over y than y is over z ,” or to compare the
utility of a point to some cardinal value, as in u(x) < 0, and conclude that “x is
worse than nothing,” makes no sense.

1.8. Commentary
This ends the mathematical development of the standard models of choice, prefer-
ence, and utility. But a lot of commentary remains.

The standard model as positive theory
At about this point (if not earlier), many students object to utility maximization.
“No one,” this objection goes, “chooses objects after consulting some numerical
index of goodness. A model that says that consumers choose in this fashion is
a bad description of reality and therefore a bad foundation for any useful social
science.”

Just because consumers don’t actively maximize utility doesn’t mean that the
model of utility-maximizing choice is a bad descriptive or positive model. To
suppose that individuals act as if theymaximize utility is not the same as supposing
that they consciously do so. We have proven the following: If choice behavior
satisfies finite nonemptiness and the choice coherence, then (as long as something
is chosen) choice behavior is as if it were preference driven for some complete and
transitive weak preference relation. And if the set of objects for which choice is
considered is countable or if revealed preferences are continuous, then preference-
driven choice is as if it were done to maximize a numerical index of goodness.

Utility maximization is advanced as a descriptive or positive model of con-
sumer choice. Direct falsification of the model requires that we find violations
of nonemptiness or choice coherence. If we don’t, then utility maximization is a
perfectly fine as-if model of the choices that are made.

Incomplete data about choice
Unhappily, when we look at the choices of real consumers, we do see some vi-
olations of choice coherence and nonemptiness (or, when we ask for preference
judgments, of completeness and transitivity). So the standard model is empirically
falsified. We will discuss this unhappy state of affairs momentarily.

But another problem should be discussedfirst. The assertion of two paragraphs
ago fails to recognize the empirical limitations that we usually face. By this I mean,
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to justifyutilitymaximizationas amodelof choice,weneed to check the consumer’s
choice function for every subset A of X , and for each A we need to know all of
c(A) . (But see Problem 1.15 for a slightweakening of this.) In any real-life situation,
we will observe (at best) c(A) for finitely many subsets of X , and wewill probably
see something less than this; we will probably see for each of a finite number of
subsets of X one element out of c(A) ; namely, the object chosen. We won’t know if
there are other, equally good members of A .

To take seriously the model of utility maximization as an empirically testable
model of choice, we must answer the question: Suppose we see c(A) , or even one
element from c(A) , for each of a finite number of subsets A of X . When are these
data consistent with utility maximization?

The answer to this question at the level of generality of this chapter is left to
you to develop; see Problem 1.16. In Chapter 4, we will provide an answer to a
closely related problem,wherewe specialize to the case of consumer demandgiven
a budget constraint.

Now for the bigger question: In the data we see, how does themodel do? What
criticisms can be made of it? What does it miss, by how much, and what repairs
are possible? Complete answers to these questions would take an entire book, but
I can highlight several important categories of empirical problems, criticisms, and
alternatives.

Framing
In the models we have considered, the objects or consumption bundles x are pre-
sented abstractly, and it is implicitly assumed that the consumer knows x when
she sees it. In real life, the way in which we present an object to the consumer can
influence how she perceives it and (therefore) what choices she makes. If you find
this hard to believe, answer the following question, which is taken fromKahneman
and Tversky (1979):

As a doctor in a position of authority in the national government, you’ve been
informed that a new flu epidemic will hit your country next winter and that
this epidemic will result in the deaths of 600 people. (Either death or com-
plete recovery is the outcome in each case.) There are two possible vaccination
programs that you can undertake, and doing one precludes doing the other.
Program A will save 400 people with certainty. Program B will save no one
with probability 1/3 and 600with probability 2/3. Would you choose Program
A or Program B?

Formulate an answer to this question, and then try:

As a doctor in a position of authority in the national govenment, you’ve been
informed that a new flu epidemic will hit your country next winter. To fight
this epidemic, one of two possible vaccination programs is to be chosen, and
undertaking one program precludes attempting the other. If Program X is
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adopted, 200 people will die with certainty. Under Program Y, there is a 2/3
chance that no one will die, and a 1/3 chance that 600 will die. Would you
choose Program X or Program Y?

These questions are complicated by the fact that they involve some uncertainty,
the topic of Chapter 5. But they make the point very well. Asked of health-care
professionals, the modal responses to this pair of questions were: Program A is
strictly preferred to B, while Program X is worse than Y. To be clear, the modal
health-care professional strictly preferred A to B and strictly preferred X to Y. The
point is that ProgramA is precisely ProgramX in terms of outcomes, and Programs
B and Y are the same. They sound different because ProgramsA and B are phrased
in terms of saving people, while X and Y are phrased in terms of people dying. But
within the context of the whole story, A is X and B is Y. Yet (by the modal response)
A is better than B, and X is worse than Y. Preference judgments certainly depend
on frame.

Thewaybundles are framedcanaffect how theyareperceivedandcan influence
the individual’s cognitive processes in choosing an alternative. Choice coherence
rules out the following sort of behavior: A consumer chooses apple pie over cherry
if those are the only two choices, but chooses cherry when informed that peach is
also available. Ruling this out seems sensible—the ruled-out behavior is silly—but
change the objects and you get a phenomenon that is well known to (and used by)
mail-ordermarketers. When, in amail-order catalog, a consumer is presentedwith
the description of an object, the consumer is asked to choose between the object and
hermoney. To influence the consumer to choose the object, the catalogdesignerwill
sometimes include on the same page a slightly better version of the object at amuch
higher price, or a very much worse version of the object at a slightly lower price.
The idea is to convince the consumer, who will compare the different versions of
the object, that one is a gooddeal, and soworthy of purchase. Of course, this strikes
directly at choice coherence.

The point is simple: When individuals choose, and when they make pairwise
preference judgments, they do so using various processes of perception and cogni-
tion. When the choices are complex, individuals simplify, by focusing (for example)
on particularly salient features. Salience can be influenced by the frame: how the
objects are described; what objects are available; or (in the case of pairwise compar-
isons) how the two objects compare. This leads to violations of choice coherence in
the domain of choice, and intransitivities when consumers make pairwise prefer-
ence judgments.

Indecision
Indecision attacks a different postulate of the standard model: finite nonemptiness
or, in the context of preference, completeness. If asked to choose between 3 cans of
beer and 10 bottles of wine or 20 cans of beer and 6 bottles of wine, the consumer
might be unable to make a choice; in terms of preferences, she may be unable to
say that either bundle is as good or better than the other.



1.8. Commentary 21

An alternative to the standard model allows the consumer the luxury of inde-
cision. In terms of preferences, for each pair of objects x and y the consumer is
assumed to choose one (and only one) of four alternatives:

x is better than y or y is better than x or

x and y are equally good or I can’t rank them.

In such a case, expressed strict preference and expressed indifference are taken as
primitives, and (it seems most natural) weak preference ⌫ is defined not as the
absence of strict preference but instead as the union of expressed strict preference
and expressed indifference. In the context of such a model, transitivity of strict
preference and reflexivity of expressed indifference seem natural, transitivity of
expressed indifference is a bit problematic, and negative transitivity of strict pref-
erence is entirely problematic: The whole point of this alternative theory is that the
consumer is allowed to say that 4 cans of beer and 11 bottles ofwine is strictly better
than 3 and 10, but both are incomparable to 20 cans of beer and 6 bottles of wine. In
terms of choice functions, we would allow c(A) = ;—“a choice is too hard”—even
for finite sets A , although we could enrich the theory by having another function
b on the set of subsets of X , the rejected set function, where for any set A , b(A)
consists of all elements of A for which something else in A is strictly better.

Inconsistency and probabilistic choice
It is not unknown, empirically, for a consumer to be offered a (hypothetical) choice
between x and y and indicate that she will take x , and later to be offered the same
hypothetical choice and indicate that she prefers y . This can be an issue of framing
or anchoring; something in the series of questions asked of the consumer changes
theway she views the relativemerits of x and y . Or it can be amatter of indecision;
she is not really sure which she prefers and, if forced to make a choice, she does
so inconsistently. Or it could be simple inconsistency. Whatever it is, it indicates
that when we observe the choice behavior of real consumers, their choices may be
stochastic. The standard model assumes that a consumer’s preferences are innate
and unchanging, which gives the strong coherence or consistency of choice (as we
vary the set A) that is the foundation of the theory. Perhaps a more appropriate
model is one where we suppose that a consumer is more likely or less likely to
choose a particular object depending on how highly she values it “innately,” but
she might choose an object of lower “utility” if the stars are in the right alignment
or for some other essentially random reason.

To deal empirically with the choices of real consumers, one needs a model in
which there is uncertainty in how they choose—how can you fit a model that as-
sumes rigid consistency and coherence to data that do not exhibit this?—the likeli-
hood functions just do notwork—and so, especially in the context of discrete choice
models, microeconomists have developed so-called randomutility or probabilistic-
choice models. In these models, choice in different contexts exhibits coherence or
consistency statistically, but choices in specific instances may, from the perspective
of the standard model, appear inconsistent.
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The determinants of preference
The standard model makes no attempt to answer the question, Where do prefer-
ences come from? Are they something innate to the individual, given (say) geneti-
cally? Or are they a product of experience? And if they are a product of experience,
is that experience primarily social in character? Put very baldly, does social class
determine preferences?

These questions become particularly sharp in two contexts that we reach in this
book. The first concerns dynamic choice. If the consumer’s experiences color her
preferences for subsequent choices, having a model of how this happens is impor-
tant for models of how the consumer chooses through time. This is true whether
her earlier choices are made in ignorance of the process or, more provocatively, if
her earlier choices take into account the process. We will visit this issue briefly in
Chapter 7, when we discuss dynamic choice theory; it arises very importantly in
the context of cooperation and trust in dynamic relationships (and is scheduled for
discussion in that context in Volume 3).

These questions are also important to so-called welfare analysis, which we
meet in Chapter 8. Roughly, a set of institutions will be “good” if they give con-
sumers things they (the consumers) prefer. Those who see preferences as socially
determined often balk at such judgments, especially if, as is sometimes supposed,
members of an oppressed class have socially determined tastes or preferences that
lead them to prefer outcomes that are “objectively” bad. In this book, we follow
the principles of standard (western, or capitalist, or neoclassical) economics, in
which the tastes and preferences of the individual consumer are sovereign and
good outcomes are those that serve the interests of individual consumers, as those
consumers subjectively perceive their own interests. But this is not the only way
one can do economics.

The range of choices as a value
Tomention a final criticism of the standardmodel, some economists (perhapsmost
notably, the Nobel Laureate Amartya Sen) hold that standard theory is too ends-
oriented and insufficiently attentive to process, in the following sense: In the stan-
dard theory, suppose x 2 c(A) . Then the individual is equally well off if given a
choice from A as if she is simply given x without having the opportunity to choose.
But is this correct? If individuals value being able to choose, and there is ample
psychological evidence that they do (although there is also evidence that too much
choice becomes bad), it might be sensible to use resources to widen the scope of
choice available to the individual, even if this means that the final outcome chosen
is made a bit worse evaluated purely as an outcome.

I call the standardmodel by that name because it is indeed the standard, employed
by most models in microeconomics. The rise of behavioral economics and the
development of random-choice models in empirical work make this less true than
it was, say, a decade ago. But still, most models in microeconomics have utility-
maximizing or preference-maximizing consumers. Certainly, except in a very few
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and brief instances, that is what is assumed in the remainder of this book.
My point, then, in raising all these caveats, criticisms, and possible alternatives

to the standardmodel is not to indicatewhereweareheaded. Instead, it is to remind
you that the standard model starts with a number of assumptions about human
choice behavior, assumptions that are not laws of nature. Too many economists
learn the standard model and then invest in it a quasi-religious aura that it does
not deserve. Too many economists get the idea that the standard model defines
“rational” behavior and any alternative involves irrational behavior, with all the
pejorative affect that the adjective “irrational” can connote. The standard model is
an extremely useful model. It has and continues to generate all manner of inter-
esting insights into economic (and political, and other social) phenomena. But it is
just amodel, andwhen it is time to abandon it, or modify it, or enrich it, one should
not hesitate to do so.

Bibliographic Notes
The material in this chapter lies at the very heart of microeconomics and, as such,
has a long, detailed, and in some ways controversial history. Any attempt to pro-
vide bibliographic references is bound to be insufficient. “Utility” and “marginal
utility” were at first concepts advanced as having cardinal significance—the units
mean something concrete—but then theory and thought evolved to the position
that (more or less) is taken here: Choice is primitive; choice reveals preference; and
utility maximization is solely a theoretician’s convenient mathematical construct
formodeling coherent choice and/or preferencemaximization. If you are interested
in this evolution, Robbins (1998) is well worth reading. Samuelson (1947) provides
a classic statement of where economic thought “wound up.” Samuelson’s devel-
opment is largely in the context of consumer choice in perfect markets, subject to
a budget constraint; that is, more germane to developments in Chapters 4 and 11.
As I mentioned within the text of the chapter, to the best of my knowledge, Arrow
originated what I have called “choice coherence” and its connection to preference
orderings in the abstract setting of this chapter; this was done while writing Arrow
(1951a), although the specific results were published in Arrow (1959).

Problems
Most problems associated with the material of this chapter involve proving propo-
sitions or constructing counterexamples. Therefore, these problems will give you
a lot of drill on your theorem-proving skills. If you have never acquired such
skills, most of these problems will be fairly tough. But don’t be too quick to
give up. (Reminder: Solutions to problems marked with an asterisk [such as *1.1]
are provided in the Student’s Guide, which you can access on the web at the URL
http://www.microfoundations1.stanford.edu/student.)

*1.1. A friend of mine, when choosing a bottle of wine in a restaurant, claims that
he always chooses as follows. First, he eliminates from consideration any bottle
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that costs more than $40.

Then he counts up the number of bottles of wine still under consideration (price
$40 or less) on the wine list that come from California, from France, from Italy,
from Spain, and from all other locations, and he chooses whichever of these five
categories is largest. If twoormore categoriesare tied for largestnumber, he chooses
California if it is one of the leaders, then France, Italy, and Spain, in that order. He
says he does this because the more bottles of wine there are on the list, the more
likely it is that the restaurant has good information about wines from that country.
Then, looking at the geographical category selected, he compares the number of
bottles of white, rosé, and red wine in that category that cost $40 or less, and picks
the type (white/rosé/red) that has the most entries. Ties are resolved: White first,
then red. He rationalizes this the same way he rationalized geographical category.
Finally, he chooses themost expensive bottle (less than or equal to $40) on the list of
the type and geographical category he selected. If two or more are tied, he doesn’t
care which he gets.

Assume every bottle of wine on any wine list can be uniquely described by its
price, place of origin, and color (one of white/rosé/red). The set of all wine bottles
so described (with prices $40 or less) is denoted by X , which you may assume
is finite. (For purposes of this problem, the same bottle of wine selling for two
different prices is regarded as two distinct elements of X .) Every wine list my
friend encounters is a nonempty subset A of X . (He never dines at a restaurant
without a wine list.)

The description above specifies a choice function c for all the nonempty subsets of
X , with c(A) /= ; for all nonempty A . (You can take my word for this.) Give an
example showing that this choice function doesn’t satisfy choice coherence.

1.2. Two good friends, Larry and Moe, wish to take a vacation together. All the
places they might go on vacation can be described as elements x of some given
finite set X .

Taken as individuals, Larry andMoe are both standard sorts of homo economicus.
Specifically, each, choosing singly, would employ a choice function that satisfies
finite nonemptiness and choice coherence. Larry’s choice function is cLarry , and
Moe’s is cMoe .

To come to a joint decision, Larry and Moe decide to construct a “joint choice
function” c⇤ by the rule

c⇤(A) = cLarry(A) [ cMoe(A), for all A ✓ X.

That is, they will be happy as a pair with any choice that either one of them would
make individually.

Does c⇤ satisfy finite nonemptiness? Does c⇤ satisfy choice coherence? To answer
each of these questions, you should either provide a proof or a counterexample.
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*1.3. Disheartened by the result (in Problem 1.2) of their attempt to form a joint
choice function, Larry and Moe decide instead to work with their preferences. Let
⌫Larry be Larry’s (complete and transitive) preferences constructed from cLarry , and
let ⌫Moe be Moe’s. For their “joint” preferences ⌫⇤ , they define

x ⌫⇤ y if x ⌫Larry y or x ⌫Moe y.

In words, as a pair they weakly prefer x to y if either one of them does so. Prove
that ⌫⇤ is complete. Show by example that it need not be transitive.

1.4. What is the connection (if any) between c⇤ from Problem 1.2 and ⌫⇤ from
Problem 1.3?

1.5. Amartya Sen suggests the following two properties for a choice function c :

If x 2 c(A) and x 2 B ✓ A, then x 2 c(B). (↵)

If y 2 B and, for B ✓ A, y 2 c(A), then c(B) ✓ c(A). (�).

Paraphrasing Sen, (↵) says “If the best soccer player in the world is Brazilian, he
must be the best soccer player from Brazil.” And (�) says: “If the best soccer player
in the world is Brazilian, then every best soccer player from Brazil must be one of
the best soccer players in the world.”

Suppose (for simplicity) that X is finite. Show that choice coherence and finite
nonemptiness imply (↵) and (�) and, conversely, that (↵) and (�) together imply
choice coherence.

*1.6. Suppose X = Rk
+ for some k � 2, and we define x = (x1, . . . , xk) ⌫ y =

(y1, . . . , yk) if x � y ; that is, if for each i = 1, . . . , k , xi � yi . (This is known as
the Pareto ordering on Rk

+ ; it plays an important role in the context of social choice
theory in Chapter 8.)

(a) Show that ⌫ is transitive but not complete.

(b) Characterize � defined from ⌫ in the usual fashion; that is, x � y if x ⌫ y and
not y ⌫ x . Is � asymmetric? Is � negatively transitive? Prove your assertions.

(c) Characterize ⇠ defined from ⌫ in the usual fashion; that is, x ⇠ y if x ⌫ y and
y ⌫ x . Is ⇠ reflexive? Symmetric? Transitive? Prove your assertions.

*1.7. Suppose that X = R3
+ , and we define weak preference by x ⌫ y if for at least

two out of the three components, x gives as much of the commodity as does y .
That is, if x = (x1, x2, x3) and y = (y1, y2, y3) , then x ⌫ y if xi � yi for two (or three)
out of i = 1, 2, 3.

(a) Prove that this expression of weak preference is complete but not transitive.
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(b) Define strict preference from these weak preferences by the usual rule: x � y if
x ⌫ y but not y ⌫ x . Show that this rule is equivalent to the following alternative:
x � y if x gives strictly more than y in at least two components. Is � asymmetric?
Is � negatively transitive?

(Hint: Before you start on the problem, figure out what it means if y is notweakly
preferred to x in terms of pairwise comparisonof the components of x and y . Once
you have this, the problem isn’t too hard.)

1.8. Prove Proposition 1.7.

1.9. Prove Proposition 1.10.

*1.10. Consider the followingpreferences: X = [0, 1]⇥[0, 1], and (x1, x2) ⌫ (x01, x02)
if either x1 > x01 or if x1 = x01 and x2 � x02 . These are called lexicographicpreferences,
because they work something like alphabetical order; to rank any two objects, the
first component (letter) of each is compared, and only if those first components
agree are the second components considered. Show that this preference relation is
complete and transitive but does not have a numerical representation.

*1.11. Prove Proposition 1.14.

1.12. Propositions 1.12 and 1.15 guarantee that continuous preferences on Rk
+

have a utility representation. This problem aims to answer the question, Does
the construction of the utility representation implicit in the proofs of these two
propositions provide a continuous utility function? (The answer is no, and the
question really is,What sort ofutility function isproduced?) Consider the following
example: Let X = [0, 1] (not quite the full positive orthant, but the differencewon’t
be a problem), and let preferences be given by x ⌫ y if x � y . The proof of
Proposition 1.12 requires a countable subset X⇤ ; so take for this set the set of
rational numbers, enumerated in the following order:

⇢
0, 1, 12 ,

1
3 ,
2
3 ,
1
4 ,
3
4 ,
1
5 ,
2
5 , . . .

�
.

First prove that this set X⇤ suits; that is, if x � y , then x ⌫ x⇤ � y for some x⇤

from X⇤. Then to the best of your ability, draw and/or describe the function u
produced by the proof of Proposition 1.15. This function u is quite discontinuous;
can you find a continuous function v that represents ⌫?

*1.13. (This problem should only be attempted by students who were enchanted
by their course on real analysis.) Proposition 1.19 states that if preferences ⌫c

generated from choice function c are continuous on X = Rk
+ and if c satisfies

finite nonemptiness, choice coherence, and Assumption 1.16, then c(A) /= ; for all
compact sets A . In Chapter 2, this is going to be an easy corollary of a wonderful
result known as Debreu’s Theorem, which shows that continuous preferences can
always be represented by a continuous function; with Debreu’s Theorem in hand,
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proving Proposition 1.19 amounts to remembering that continuous functions on
nonempty and compact sets attain their supremum. (Well, not quite. I’ve included
Assumption 1.16 here for a reason. What is that reason?) But suppose we try to
prove Proposition 1.19 without Debreu’s Theorem. One line of attack is to enlist
Proposition 1.14: If preferences are continuous, then for every x , the set {y 2 X :
x � y} is (relatively, in X ) open. Use this to prove Proposition 1.19.

1.14. Concerning Proposition 1.21, suppose throughout that u and v are two
utility representations of (complete and transitive) preference relations ⌫u and ⌫v

on a given set X .

(a) Show that if f : R ! R is such that v(x) = f (u(x)) for all x 2 X and if f is
strictly increasing on u(X) , then ⌫u and ⌫v are identical.

(b) Show that if f : R ! R is such that v(x) = f (u(x)) for all x in X and if ⌫u and
⌫v are identical, then f is strictly increasing on u(X) .

(c) Suppose that X = [0,1) , v(x) = x , and

u(x) =
⇢

x, for x  1, and
x + 1, for x > 1.

Show that if f : R ! R is such that v(x) = f (u(x)) for all x , then f cannot be a
strictly increasing function on all of R .

(d) Suppose that ⌫u and ⌫v are the same. For each r 2 R , define Xr = {x : u(x) 
r} and f (r) = sup{v(x) : x 2 Xr} . Prove that f composed with u is v (that is,
f (u(x)) = v(x) for all x 2 X ) and that f is strictly increasing on u(X) . Prove that
f is nondecreasing on all of R . Why, in the statement of Proposition 1.21, does it
talk about how f might have to be extended real-valued (that is, f (r) = ±1)?

1.15. As we observed on page 16, one approach to the “problem” that choice on
some subsets of a set X might be infinite is to restrict the domain of the choice
function c to a collection A of subsets of X where it is reasonable to assume that
c(A) /= ; for all A 2 A . So suppose, for a given set X , we have a collection of
nonempty subsets of X , denoted A , and a choice function c : A ! 2X \ ; with
the usual restriction that c(A) ✓ A . Note that we just assumed that c(A) /= ; for all
A 2 A ! Suppose that c satisfies choice coherence, and suppose that A contains all
one-, two-, and three-element subsets of X . Prove: For every pair x, y 2 X , define
x ⌫c y if x 2 c({x, y}) . Then for every A 2 A , c(A) = {x 2 A : x ⌫c y for all y 2 A} .
In words, as long as c satisfies choice coherence and A contains all the one-, two-,
and three-element sets (and possibly others in addition), choice out of any A 2 A
is choice according to the preferences that are revealed by choice from the one- and
two-element subsets of X . 5

5 With reference to footnote 1, this is howMas-Collel et al. tackle the connection between choice and
preference.
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*1.16. Proposition 1.5 provides the testable restrictions of the standard model of
preference-driven choice for finite X ; it takes a violation of either finite nonempti-
ness or choice coherence to reject the theory. But this test requires tht we have all
the data provided by c(·) ; that is, we know c(A) in its entirety for every nonempty
subset of X .

Two problems arise if we really mean to test the theory empirically. First, we will
typically have data on c(A) for only some subsets of X . Second, if c(A) contains
more than one element, we may only get to see one of those elements at a time; we
see what the consumer chooses in a particular instance, not everything she would
conceivably have been happy to choose.

(a) Show that the second of these problems can reduce the theory to a virtual
tautology: Assume that when we see x 2 A chosen from A , this doesn’t preclude
the possibility that one or more y 2 A with y /= x is just as good as x . Prove that in
this case, no data that we see (as long as the consumer makes a choice from every
set of objects) ever contradict the preference-based choice model. (This is a trick
question. If you do not see the trick quickly, and you will know if you do, do not
waste a lot of time on it.)

(b)Concerning thefirstproblem, suppose that, for some (butnot all) subsets A ✓ X ,
we observe all of c(A) . Show that these partial data about the function c may satisfy
choice coherence and still be inconsistentwith the standardpreference-basedchoice
model. (Hint: Suppose X has three elements and you only see c(A) for all two-
element subsets of X .)

(c) Continue to suppose that we know c(A) for some but not all subsets of X .
Specifically, suppose that we are given data on c(A) for a finite collection of subsets
of X , namely for A1, . . . , An for some finite integer n . From these data, define

x ⌫r y if x 2 c(Ak) and y 2 Ak , for some k = 1, . . . , n , and

x �r y if x 2 c(Ak) and y 62 c(Ak) for some k = 1, . . . , n .

The superscript r is a mnemonic for “revealed.” Note that x �r y implies x ⌫r y .

Definition 1.22. The data {c(Ak); k = 1, 2, . . . , n} violate the Simple Generalized
Axiomof RevealedPreference (or SGARP), if there exists a finite set {x1, . . . , xm} ✓ X
such that xi ⌫r xi+1 for i = 1, . . . ,m� 1 and xm �r x1 . The data satisfy SGARP if no
such set can be produced.

Proposition 1.23. If the data {c(Ak); k = 1, 2, . . . , n} violate SGARP, then no complete
and transitive ⌫ gives rise (in the usual fashion) to these data. If the data satisfy SGARP,
then a complete and transitive ⌫ can be produced to rationalize the data.

Prove Proposition 1.23. (This is neither easy nor quick. But it is important for things
we do in Chapter 4, so you should at least read through the solution to this problem
that is provided in the Student’s Guide.)
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1.17. In this problem, we consider an alternative theory to the standard model, in
which the consumer is unable/unwilling tomake certain preference judgments. We
desire a theory along the following lines: There are two primitive relations that the
consumer provides, strict preference � and positive indifference ⇠ . The following
properties are held to be desirable in this theory:

1. � is asymmetric and transitive;

2. ⇠ is reflexive, symmetric, and transitive;

3. if x � y and y ⇠ z , then x � z ; and

4. if x ⇠ y and y � z , then x � z .

For all parts of this problem, assume that X , the set onwhich � and ⇠ are defined,
is a finite set.

(a) Prove that 1 through 4 imply: If x � y , then neither y ⇠ x nor x ⇠ y .

(b) Given � and ⇠ (defined for a finite set X ) with the four properties listed,
construct a weak preference relationship ⌫ by x ⌫ y if x � y or x ⇠ y . Is this
weak preference relationship complete? Is it transitive?

(c) Suppose we begin with a primitive weak preference relationship ⌫ and define
� and ⇠ from it in the usual manner: x � y if x ⌫ y and not y ⌫ x , and x ⇠ y if
x ⌫ y and y ⌫ x . What properties must ⌫ have so that � and ⇠ so defined have
properties 1 through 4?

(d) Supposewe have a function U : X ! R andwe define x � y if U (x) > U (y) +1
and x ⇠ y if U (x) = U (y) . That is, indifferent bundles have the same utility; to
get strict preference, there must be a “large enough” utility difference between the
two bundles. Do � and ⇠ so constructed from U have any/all of the properties 1
through 4?

(e) Suppose we have � and ⇠ satisfying 1 through 4 for a finite set X . Does
there exist a function U : X ! R such that U (x) = U (y) if and only if x ⇠ y and
U (x) > U (y) + 1 if and only if x � y ? To save you the effort of trying to prove this,
I will tell you that the answer is no, in general. Provide a counterexample.

(f) (Good luck.) Can you devise an additional property or properties for � and ⇠
such that we get precisely the sort of numerical representation described in part d?
(This is quite difficult; you may want to ask your instructor for a hint.)




