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Porphyry Copper Systems*
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Abstract
Porphyry Cu systems host some of the most widely distributed mineralization types at convergent plate

boundaries, including porphyry deposits centered on intrusions; skarn, carbonate-replacement, and sediment-
hosted Au deposits in increasingly peripheral locations; and superjacent high- and intermediate-sulfidation epi-
thermal deposits. The systems commonly define linear belts, some many hundreds of kilometers long, as well as
occurring less commonly in apparent isolation. The systems are closely related to underlying composite plutons,
at paleodepths of 5 to 15 km, which represent the supply chambers for the magmas and fluids that formed the
vertically elongate (>3 km) stocks or dike swarms and associated mineralization. The plutons may erupt volcanic
rocks, but generally prior to initiation of the systems. Commonly, several discrete stocks are emplaced in and
above the pluton roof zones, resulting in either clusters or structurally controlled alignments of porphyry Cu
systems. The rheology and composition of the host rocks may strongly influence the size, grade, and type of
mineralization generated in porphyry Cu systems. Individual systems have life spans of ~100,000 to several mil-
lion years, whereas deposit clusters or alignments as well as entire belts may remain active for 10 m.y. or longer.

The alteration and mineralization in porphyry Cu systems, occupying many cubic kilometers of rock, are
zoned outward from the stocks or dike swarms, which typically comprise several generations of intermediate
to felsic porphyry intrusions. Porphyry Cu ± Au ± Mo deposits are centered on the intrusions, whereas car-
bonate wall rocks commonly host proximal Cu-Au skarns, less common distal Zn-Pb and/or Au skarns, and,
 beyond the skarn front, carbonate-replacement Cu and/or Zn-Pb-Ag ± Au deposits, and/or sediment-hosted
(distal-disseminated) Au deposits. Peripheral mineralization is less conspicuous in noncarbonate wall rocks but
may include base metal- or Au-bearing veins and mantos. High-sulfidation epithermal deposits may occur in
lithocaps above porphyry Cu deposits, where massive sulfide lodes tend to develop in deeper feeder structures
and Au ± Ag-rich, disseminated deposits within the uppermost 500 m or so. Less commonly, intermediate-
 sulfidation epithermal mineralization, chiefly veins, may develop on the peripheries of the lithocaps. The
 alteration-mineralization in the porphyry Cu deposits is zoned upward from barren, early sodic-calcic through
potentially ore-grade potassic, chlorite-sericite, and sericitic, to advanced argillic, the last of these constituting
the lithocaps, which may attain >1 km in thickness if unaffected by significant erosion. Low sulfidation-state
chalcopyrite ± bornite assemblages are characteristic of potassic zones, whereas higher sulfidation-state sul-
fides are generated progressively upward in concert with temperature decline and the concomitant greater
 degrees of hydrolytic alteration, culminating in pyrite ± enargite ± covellite in the shallow parts of the litho-
caps. The porphyry Cu mineralization occurs in a distinctive sequence of quartz-bearing veinlets as well as in
disseminated form in the altered rock between them. Magmatic-hydrothermal breccias may form during por-
phyry intrusion, with some of them containing high-grade mineralization because of their intrinsic permeabil-
ity. In contrast, most phreatomagmatic breccias, constituting maar-diatreme systems, are poorly mineralized at
both the porphyry Cu and lithocap levels, mainly because many of them formed late in the evolution of systems.

Porphyry Cu systems are initiated by injection of oxidized magma saturated with S- and metal-rich, aqueous
fluids from cupolas on the tops of the subjacent parental plutons. The sequence of alteration-mineralization
events charted above is principally a consequence of progressive rock and fluid cooling, from >700° to <250°C,
caused by solidification of the underlying parental plutons and downward propagation of the lithostatic-
 hydrostatic transition. Once the plutonic magmas stagnate, the high-temperature, generally two-phase hyper-
saline liquid and vapor responsible for the potassic alteration and contained mineralization at depth and early
overlying advanced argillic alteration, respectively, gives way, at <350°C, to a single-phase, low- to moderate-
salinity liquid that causes the sericite-chlorite and sericitic alteration and associated mineralization. This same
liquid also causes mineralization of the peripheral parts of systems, including the overlying lithocaps. The pro-
gressive thermal decline of the systems combined with synmineral paleosurface degradation results in the char-
acteristic overprinting (telescoping) and partial to total reconstitution of older by younger alteration-mineral-
ization types. Meteoric water is not required for formation of this alteration-mineralization sequence although
its late ingress is commonplace.

Many features of porphyry Cu systems at all scales need to be taken into account during planning and exe-
cution of base and precious metal exploration programs in magmatic arc settings. At the regional and district
scales, the occurrence of many deposits in belts, within which clusters and alignments are prominent, is a pow-
erful exploration concept once one or more systems are known. At the deposit scale, particularly in the por-
phyry Cu environment, early-formed features commonly, but by no means always, give rise to the best ore-
bodies. Late-stage alteration overprints may cause partial depletion or complete removal of Cu and Au, but
metal concentration may also result. Recognition of single ore deposit types, whether economic or not, in por-
phyry Cu systems may be directly employed in combination with alteration and metal zoning concepts to
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Introduction

PORPHYRY Cu systems are defined as large volumes (10−>100
km3) of hydrothermally altered rock centered on porphyry Cu
stocks that may also contain skarn, carbonate-replacement,
sediment-hosted, and high- and intermediate-sulfidation epi-
thermal base and precious metal mineralization. Along with
calc-alkaline batholiths and volcanic chains, they are the hall-
marks of magmatic arcs constructed above active subduction
zones at convergent plate margins (Sillitoe, 1972; Richards,
2003), although a minority of such systems occupies postcol-
lisional and other tectonic settings that develop after subduc-
tion ceases (e.g., Richards, 2009). The deeper parts of por-
phyry Cu systems may contain porphyry Cu ± Mo ± Au
deposits of various sizes (<10 million metric tons [Mt]-10 bil-
lion metric tons [Gt]) as well as Cu, Au, and/or Zn skarns (<1
Mt−>1 Gt), whereas their shallower parts may host high- and

intermediate-sulfidation epithermal Au ± Ag ± Cu orebodies
(<1 Mt−>1 Gt). Porphyry Cu systems were generated world-
wide since the Archean, although Meso-Cenozoic examples
are most abundantly preserved (e.g., Singer et al., 2008; Fig.
1), probably because younger arc terranes are normally the
least eroded (e.g., Seedorff et al., 2005; Kesler and Wilkinson,
2006; Wilkinson and Kesler, 2009). 

Porphyry Cu systems presently supply nearly three-quar-
ters of the world’s Cu, half the Mo, perhaps one-fifth of the
Au, most of the Re, and minor amounts of other metals (Ag,
Pd, Te, Se, Bi, Zn, and Pb). The systems also contain major
resources of these metals as well as including the world’s
largest known exploitable concentrations of Cu (203 Mt: Los
Bronces-Río Blanco, central Chile; A.J. Wilson, writ. com-
mun., 2009) and Mo (2.5 Mt: El Teniente, central Chile;
Camus, 2003), and the second largest of Au (129 Moz: Gras-
berg, including contiguous skarn, Indonesia; J. MacPherson,
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search for other related deposit types, although not all those permitted by the model are likely to be present in
most systems. Erosion level is a cogent control on the deposit types that may be preserved and, by the same
token, on those that may be anticipated at depth. The most distal deposit types at all levels of the systems tend
to be visually the most subtle, which may result in their being missed due to overshadowing by more promi-
nent alteration-mineralization. 

Butte

Bau

Cananea

Pueblo Viejo

Cerro Colorado
Collahuasi dist.

Chuquicamata dist.

Gaby

Gaby

Recsk

Majdanpek

Chelopech

Rosia Poieni

Sar Cheshmeh

Saindak Reko Diq

Tampakan

Boyongan-Bayugo

Grasberg-Ertsberg

Frieda River dist.(Nena)

Wafi-Golpu

Dizon

Bau

Cabang Kiri

Batu Hijau

Ok Tedi

Panguna

Cadia

Cadia

Koloula

Ray

Northparkes

Mamut

Lepanto & Guinaoang
(Mankayan dist.)

Santo Tomas &
Nugget Hill

II

Kounrad

Sepon

Almalyk Oyu Tolgoi

OyuT olgoi

Taca Taca Bajo
Bajo de la Alumbrera (Farallón Negro dist.) & Agua Rica
Nevados del Famatina

Pascua-Lama & Veladero

Esperanza

Escondida &
Chimborazo

El Salvador

Potrerillos

Andacollo

Marte &
Caspiche

El Abra

Mineral Park

Toquepala &
Cuajone

Ray Globe-
Miami

Santa Rita
(Central dist.)

Sierrita-
Esperanza

Red
Mountain

Resolution
(Superior dist.)

Morenci

Bingham

Galore Creek

Mt Polley

Tintic

Highland Valley dist.

Island Copper

Yerington

Bisbee

Bisbee

Copper Canyon

Yanacocha Choquelimpie

Los Pelambres

El Teniente

Los Bronces-
Río Blanco

Cerro de Pasco
& Colquijirca

Cotabambas

Antamina

Pebble

Cu-Mo Porphyry
Porphyry + major skarn/
carbonate replacement
High-sulfidation
epithermal porphyry±

Miocene-Pleistocene
Principal metals Deposit type Age

Cu-Mo-Au Eocene-Oligocene
Cu-Au Late Cretaceous-Paleocene
Ag-Pb-Zn-Cu Late Triassic-Early Cretaceous
No porphyry known Late Devonian-Carboniferous

Ordovician
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ditional giant examples. The principal deposit type(s), contained metals, and age are also indicated. Data mainly from sources
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writ. commun., 2009). Typical hypogene porphyry Cu de-
posits have average grades of 0.5 to 1.5 percent Cu, <0.01 to
0.04 percent Mo, and 0.0× to 1.5 g/t Au, although a few “Au-
only” deposits have Au tenors of 0.9 to 1.5 g/t but little Cu
(<0.1 %). The Cu and, in places, Au contents of skarns are
typically higher still. In contrast, large high-sulfidation epi-
thermal deposits average 1 to 3 g/t Au but have only minor or
no recoverable Cu, commonly as a result of supergene
 removal.

This field-oriented article reviews the geology of porphyry
Cu systems at regional, district, and deposit scales. The resul-
tant geologic model is then used as the basis for a brief syn-
thesis of porphyry Cu genesis and discussion of exploration
guidelines. The deposits and prospects used as examples
throughout the text are located and further characterized in
Figure 1. The economically important results of supergene
oxidation and enrichment in porphyry Cu systems have been
addressed elsewhere (Sillitoe, 2005, and references therein). 

Regional- and District-Scale Characteristics

Belts and provinces

Porphyry Cu systems show a marked tendency to occur in
linear, typically orogen-parallel belts, which range from a few
tens to hundreds and even thousands of kilometers long, as
exemplified by the Andes of western South America (Sillitoe
and Perelló, 2005; Fig. 2) and the Apuseni-Banat-Timok-
Srednogorie belt of Romania, Serbia, and Bulgaria (Janković,
1977; Popov et al., 2002). Deposit densities commonly attain
15 per 100,000 km2 of exposed permissive terrane (Singer et
al., 2005). Each belt corresponds to a magmatic arc of broadly
similar overall dimensions. One or more subparallel belts
constitute porphyry Cu or epithermal Au provinces, several of
which give rise to global-scale anomalies for Cu (e.g., north-
ern Chile-southern Peru, southwestern North America) or Au
(northern Peru; Sillitoe, 2008). Notwithstanding the ubiquity
of porphyry Cu belts, major deposits may also occur in isola-
tion or at least as distant outliers of coherent belts and
provinces (e.g., Pebble in Alaska, Butte in Montana, and
Bingham in Utah; Sillitoe, 2008; Fig. 1). Pueblo Viejo in the
Dominican Republic (Fig. 1) is the best example of a major,
isolated high-sulfidation epithermal Au deposit, albeit with no
currently known porphyry Cu counterpart.

Porphyry Cu belts developed during well-defined metallo-
genic epochs, which isotopic dating shows to have typical du-
rations of 10 to 20 m.y. Each porphyry Cu epoch is closely
linked to a time-equivalent magmatic event. Again, the Andes
(Sillitoe and Perelló, 2005), southwestern North America (Ti-
tley, 1993; Barra et al., 2005), and Apuseni-Banat-Timok-
Srednogorie belt (Zimmerman et al., 2008) provide prime ex-
amples. Individual porphyry Cu belts are commonly spatially
separate rather than superimposed on one another, reflecting
arc migration as a result of steepening or shallowing of sub-
ducted slabs between the individual magmatic-metallogenic
epochs (e.g., Sillitoe and Perelló, 2005). The processes of sub-
duction erosion and terrane accretion at convergent margins
may assist with land- or trenchward migration of the arcs and
contained porphyry Cu belts (e.g., von Huene and Scholl,
1991; Kay et al., 2005). Nevertheless, several temporally
 discrete porphyry Cu-bearing arcs may be superimposed on
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FIG. 2.  A preeminent example of spatial and temporal coincidence be-
tween a porphyry Cu belt and an intra-arc fault zone: the northern Chile part
of the central Andean middle Eocene to early Oligocene porphyry Cu belt
and Domeyko fault system (summarized from Sillitoe and Perelló, 2005).
The apparent termination of the belt in northernmost Chile is a result of con-
cealment beneath Miocene volcanic rocks. Approximate positions of the
main arc-transverse lineaments in northern Chile are also shown (after Sal-
fity, 1985, in Richards et al., 2001).



one another: five since ~45 Ma in the Chagai belt, Pakistan
(Perelló et al., 2008). 

Tectonic settings

Porphyry Cu systems are generated mainly in magmatic arc
(including backarc) environments subjected to a spectrum of
regional-scale stress regimes, apparently ranging from mod-
erately extensional through oblique slip to contractional (Tos-
dal and Richards, 2001). Strongly extensional settings, typi-
fied by compositionally bimodal basalt-rhyolite magmatism,
lack significant porphyry Cu systems (Sillitoe, 1999a; Tosdal
and Richards, 2001). The stress regime depends, among
other factors, on whether there is trench advance or rollback
and the degree of obliquity of the plate convergence vector
(Dewey, 1980). 

Nevertheless, there is a prominent empirical relationship
between broadly contractional settings, marked by crustal
thickening, surface uplift, and rapid exhumation, and large,
high-grade hypogene porphyry Cu deposits, as exemplified by
the latest Cretaceous to Paleocene (Laramide) province of
southwestern North America, middle Eocene to early
Oligocene (Fig. 2) and late Miocene to Pliocene belts of the
central Andes, mid-Miocene belt of Iran, and Pliocene belts
in New Guinea and the Philippines (Fig. 1; Sillitoe, 1998; Hill
et al., 2002; Perelló et al., 2003a; Cooke et al., 2005; Rohrlach
and Loucks, 2005; Sillitoe and Perelló, 2005; Perelló, 2006).
Large, high-sulfidation epithermal Au deposits also form in
similar contractional settings at the tops of tectonically thick-
ened crustal sections, albeit not together with giant porphyry
Cu deposits (Sillitoe and Hedenquist 2003; Sillitoe, 2008). It
may be speculated that crustal compression aids development
of large mid- to upper-crustal magma chambers (Takada,
1994) capable of efficient fractionation and magmatic fluid
generation and release, especially at times of rapid uplift and
erosional unroofing (Sillitoe, 1998), events which may
presage initiation of stress relaxation (Tosdal and Richards,
2001; Richards, 2003, 2005; Gow and Walshe, 2005). Changes
in crustal stress regime are considered by some as especially
favorable times for porphyry Cu and high-sulfidation epi-
thermal Au deposit generation (e.g., Tosdal and Richards,
2001), with Bingham and Bajo de la Alumbrera, Argentina,
for example, both apparently occupying such a tectonic niche
(Presnell, 1997; Sasso and Clark, 1998; Halter et al., 2004; Sil-
litoe, 2008). 

Faults and fault intersections are invariably involved, to
greater or lesser degrees, in determining the formational sites
and geometries of porphyry Cu systems and their constituent
parts. Intra-arc fault systems, active before as well as during
magmatism and porphyry Cu generation, are particularly im-
portant localizers, as exemplified by the Domeyko fault sys-
tem during development of the preeminent middle Eocene
to early Oligocene belt of northern Chile (Sillitoe and Perelló,
2005, and references therein; Fig. 2). Some investigators em-
phasize the importance of intersections between continent-
scale transverse fault zones or lineaments and arc-parallel
structures for porphyry Cu formation, with the Archibarca
and Calama-El Toro lineaments of northern Chile (Richards
et al., 2001; Fig. 2), the Lachlan Transverse Zone of New
South Wales (Glen and Walshe, 1999), comparable features
in New Guinea (Corbett, 1994; Hill et al., 2002), and the

much wider (160 km) Texas lineament of southwestern North
America (Schmitt, 1966) being oft-quoted examples. These
transverse features, possibly reflecting underlying basement
structures, may facilitate ascent of the relatively small magma
volumes involved in porphyry Cu systems (e.g., Clark, 1993;
Richards, 2000).

Deposit clusters and alignments

At the district scale, porphyry Cu systems and their con-
tained deposits tend to occur as clusters or alignments that
may attain 5 to 30 km across or in length, respectively. Clus-
ters are broadly equidimensional groupings of deposits (e.g.,
Globe-Miami district, Arizona; Fig. 3a), whereas alignments
are linear deposit arrays oriented either parallel or trans-
verse to the magmatic arcs and their coincident porphyry Cu
belts. Arc-parallel alignments may occur along intra-arc
fault zones, as exemplified by the Chuquicamata district,
northern Chile (Fig. 3b) whereas cross-arc fault zones or lin-
eaments control arc-transverse alignments, as in the Cadia,
New South Wales (Fig. 3c) and Oyu Tolgoi, Mongolia dis-
tricts (Fig. 3d).

Irrespective of whether the porphyry Cu systems and con-
tained deposits define clusters or alignments, their surface
distributions are taken to reflect the areal extents of either
underlying parental plutons or cupolas on their roofs. Within
the clusters and alignments, the distance (100s−1,000s m) be-
tween individual deposits (e.g., Sillitoe and Gappe, 1984) and
even their footprint shapes can vary greatly, as observed in the
Chuquicamata and Cadia districts (Fig. 3b, c). 

Clusters or alignments of porphyry Cu systems can display
a spread of formational ages, which attain as much as 5 m.y.
in the Chuquicamata (Ballard et al., 2001; Rivera and Pardo,
2004; Campbell et al., 2006) and Yanacocha districts (Longo
and Teal, 2005) but could be as much as ~18 m.y. in the Cadia
district (Wilson et al., 2007). This situation implies that the
underlying parental plutons have protracted life spans, albeit
intermittent in some cases, with porphyry Cu formation tak-
ing place above them at different places over time. 

Pluton-porphyry relationships

Varied relationships are observed between porphyry Cu
systems and precursor plutons, which are typically multi-
phase, equigranular intrusions, commonly of batholithic di-
mensions and dioritic to granitic compositions; they are not
only spatially, but also temporally and probably genetically re-
lated to porphyry Cu and superjacent epithermal Au forma-
tion (Fig. 4). The precursor plutons may act as hosts to a sin-
gle deposit, as at Mount Polley, British Columbia (Fraser et
al., 1995); an alignment of coalesced deposits, as in the Los
Bronces-Río Blanco district (Fig. 5a); or clusters of two or
more discrete deposits, as in the El Abra intrusive complex,
northern Chile (Fig. 5b) and Guichon Creek batholith, High-
land Valley district, British Columbia (Fig. 5c). The precursor
plutons and porphyry Cu stocks are typically separated by
time gaps of 1 to 2 m.y. or less (e.g., Dilles and Wright, 1988;
Casselman et al., 1995; Mortensen et al., 1995; Dilles et al.,
1997; Deckart et al., 2005; Campbell et al., 2006). Many por-
phyry Cu systems, particularly those that are only shallowly
exposed, lack known precursor plutons, probably because
they lie at inaccessible depths (Fig. 4). 
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The precursor plutons are considered as the mid- to upper-
crustal crystallization sites of mafic to felsic magmas that as-
cended from deeper reservoirs before porphyry Cu systems
were developed (see Richards, 2003). Outcropping precursor
plutons normally represent the shallower, earlier consolidated
parts rather than the magma volumes from which the fluids
for porphyry Cu generation were derived (Fig. 4). These
parental magma chambers, also represented by similar
equigranular to weakly porphyritic plutons, are not exposed in
porphyry Cu systems unless postmineralization extensional
tectonism caused profound tilting and dismemberment of the
systems, as reconstructed in the Yerington district, Nevada
(Dilles, 1987; Dilles and Proffett, 1995) and elsewhere (See-
dorff et al., 2008).

Volcanic connections

Porphyry Cu systems may be spatially associated with co-
magmatic, calc-alkaline or, less commonly, alkaline volcanic
rocks, typically of intermediate to felsic composition (Sillitoe,
1973; Fig. 4), which are generally erupted subaerially 0.5 to 3
m.y. prior to stock intrusion and mineralization, as well docu-
mented in the Bingham (Waite et al., 1997), Farallón Negro,
Argentina (Sasso and Clark, 1998; Halter et al., 2004), Yer-
ington (Dilles and Wright, 1988; Dilles and Proffett, 1995),
Tampakan, Philippines (Rohrlach and Loucks, 2005), and
Yanacocha (Longo and Teal, 2005) districts. However, the
erosion involved in the unroofing of porphyry Cu deposits
also severely degrades volcanic landforms (e.g., Farallón
Negro district) and, commonly, entirely removes the eruptive

products, at least in the general vicinities of the deposits
themselves. Nevertheless, at a few localities, including the
shallowly formed Marte porphyry Au deposit, northern Chile
(Vila et al., 1991), a comagmatic andesitic stratovolcano is still
partially preserved, including parts of its unmodified lower
depositional slopes (or planèze). Notwithstanding their lower
preservation potential, smaller volume volcanic centers—
flow-dome complexes and maar-diatreme systems (e.g.,
Mankayan district, Philippines and Grasberg; Sillitoe and An-
geles, 1985; MacDonald and Arnold, 1994; I. Kavalieris, pers.
commun., 1999) —may still also be recognizable in the shal-
low parts of porphyry Cu systems. Volcanic landforms are ob-
viously even better preserved in the shallower high-sulfida-
tion epithermal environment above porphyry Cu deposits
(e.g., flow-dome complexes at Yanacocha; Turner, 1999;
Longo and Teal, 2005; e.g., Fig. 6).

Catastrophically explosive volcanism, particularly ash-flow
caldera formation, is normally incompatible with synchronous
porphyry Cu and superjacent epithermal Au deposit forma-
tion, because magmatic volatiles are dissipated during the vo-
luminous pyroclastic eruptions rather than being retained and
focused in a manner conducive to ore formation (Sillitoe,
1980; Pasteris, 1996; Cloos, 2001; Richards, 2005). Neverthe-
less, calderas may influence the localization of later, geneti-
cally unrelated porphyry Cu systems (e.g., El Salvador, north-
ern Chile; Cornejo et al., 1997).

There is a strong suggestion that comagmatic volcanism
may be inhibited in some major porphyry Cu belts as a result
of their characteristic contractional tectonic settings, as in the
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middle Eocene to early Oligocene belt of northern Chile, be-
cause of the tendency for subsurface magma accumulation in
the absence of widely developed extensional faulting
(Mpodozis and Ramos, 1990). The same situation is also ap-
parent in several giant high-sulfidation epithermal Au de-
posits generated in thickened crust during tectonic uplift,
such as Pascua-Lama and Veladero, northern Chile-Ar-
gentina, where the near absence of contemporaneous volcan-
ism is more certain (Bissig et al., 2001; Charchaflié et al.,
2007) given the much shallower erosion level, including par-
tial paleosurface preservation (see below). 

Wall-rock influences

Porphyry Cu systems are hosted by a variety of igneous,
sedimentary, and metamorphic rocks (e.g., Titley, 1993), giv-
ing the initial impression of wall rocks playing a noninfluen-
tial role. It is becoming increasingly clear, however, that cer-
tain lithologic units may enhance grade development in both
porphyry Cu and related deposit types.

Massive carbonate sequences, particularly where marble is
developed near intrusive contacts, and other poorly fractured,
fine-grained rocks have the capacity to act as relatively 
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FIG. 5.  Examples of porphyry Cu deposits within and near precursor plutons. a. Los Bronces-Río Blanco breccia-domi-
nated deposit trending across the San Francisco batholith, central Chile (after Serrano et al., 1996; J.C. Toro, writ. commun.,
2007). b. El Abra and Conchi Viejo deposits in the El Abra intrusive complex, northern Chile (after Dilles et al., 1997). 
c. Highland Valley deposit cluster in the Guichon Creek batholith, British Columbia (after Casselman et al., 1995). Note the
variable positions of the deposits with respect to the exposed plutons, but their confinement to late felsic phases. Scales are
different. 
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FIG. 6.  Anatomy of a telescoped porphyry Cu system showing spatial interrelationships of a centrally located porphyry Cu
± Au ± Mo deposit in a multiphase porphyry stock and its immediate host rocks; peripheral proximal and distal skarn, car-
bonate-replacement (chimney-manto), and sediment-hosted (distal-disseminated) deposits in a carbonate unit and subep-
ithermal veins in noncarbonate rocks; and overlying high- and intermediate-sulfidation epithermal deposits in and alongside
the lithocap environment. The legend explains the temporal sequence of rock types, with the porphyry stock predating maar-
diatreme emplacement, which in turn overlaps lithocap development and phreatic brecciation. Only uncommonly do indi-
vidual systems contain several of the deposit types illustrated, as discussed in the text (see Table 3). Notwithstanding the as-
sertion that cartoons of this sort (including Fig. 10) add little to the understanding of porphyry Cu genesis (Seedorff and
Einaudi, 2004), they embody the relationships observed in the field and, hence, aid the explorationist. Modified from Silli-
toe (1995b, 1999b, 2000). 



impermeable seals around and/or above porphyry Cu de-
posits, resulting in high-grade ore formation (e.g., Grasberg;
Sillitoe, 1997). Elsewhere, small-volume porphyry intrusions
and the associated magmatic fluids fail to effectively pene-
trate low-permeability rock packages, leading to the appar-
ently uncommon development of blind, high-grade deposits,
as at Hugo Dummett in the Oyu Tolgoi district (Kirwin et al.,
2003, 2005) and Ridgeway in the Cadia district (Wilson et al.,
2003). High-sulfidation epithermal deposits may be similarly
blind, beneath a thick limestone sequence in the case of
Pueblo Viejo (Sillitoe et al., 2006).

Ferrous Fe-rich lithologic units also appear to favor high-
grade porphyry Cu mineralization (e.g., Ray and Mineral
Park, Arizona; Phillips et al., 1974; Wilkinson et al., 1982),
presumably because of their capacity to effectively precipitate
Cu transported in oxidized magmatic fluids (see below). It is
unlikely coincidental that at least half the ore at three of the
highest grade hypogene porphyry Cu deposits is hosted by
such rocks: a gabbro-diabase-basalt complex at El Teniente
(Skewes et al., 2002), a Proterozoic diabase sill complex at
Resolution, Arizona (Ballantyne et al., 2003), and a tholeiitic
basalt sequence in the Oyu Tolgoi district (Kirwin et al.,
2005).

Mineralization elsewhere in porphyry Cu systems may be
even more profoundly influenced by rock type. Proximal and
distal skarn, carbonate-replacement, and sediment-hosted
mineralization types are obviously dependent on the presence
of reactive carbonate rocks, particularly thinly bedded, silty
units. Large-tonnage, high-sulfidation epithermal deposits
are favored by permeable rock packages, commonly pyroclas-
tic or epiclastic in origin (e.g., Yanacocha; Longo and Teal,
2005), although disparate lithologic units can also prove re-
ceptive where extensively fractured (e.g., granitoid at Pascua-
Lama; Chouinard et al., 2005).

Deposit-Scale Characteristics

Porphyry stocks and dikes

Porphyry Cu deposits are centered on porphyry intrusions
that range from vertical, pluglike stocks (Fig. 6), circular to
elongate in plan, through dike arrays to small, irregular bod-
ies. The stocks and dikes commonly have diameters and
lengths, respectively, of ≤1 km. However, much larger por-
phyry intrusions act as hosts in places, such as the elongate,
14-km-long stock at Chuquicamata-Radomiro Tomic (e.g.,
Ossandón et al., 2001; Fig. 3b) and the 4-km-long, <50-m-
wide dike at Hugo Dummett (Khashgerel et al., 2008; Fig.
3d). Mining and deep drilling in a few large porphyry Cu de-
posits show that mineralized intrusions have vertical extents
of >2 km (e.g., Chuquicamata and Escondida, northern
Chile, and Grasberg) and, based on evidence from the steeply
tilted systems, perhaps ≥4 km (Dilles, 1987; Seedorff et al.,
2008; Fig. 6). The size of the stocks does not appear to bear
any obvious relationship to the size of the associated porphyry
Cu deposits and their Cu contents (cf. Seedorff et al., 2005).
For example, the 12.5-Gt resource at Chuquicamata-
Radomiro Tomic is confined to the 14-km-long stock referred
to above (Ossandón et al., 2001; Camus, 2003), whereas per-
haps only roughly 20 percent of the similarly sized El Te-
niente deposit and <10 percent of the 1.5-Gt El Abra deposit

are hosted by the porphyry intrusions (Camus, 1975, 2003;
Ambrus, 1977). The distal parts of porphyry Cu systems, be-
yond the porphyry Cu deposits, either lack porphyry intru-
sions or contain only relatively minor dikes (e.g., Virgin dike
in the skarn-dominated Copper Canyon district, Nevada, and
Yerington district skarn Cu occurrences; Wotruba et al., 1988;
Dilles and Proffett, 1995). 

The porphyry Cu-related intrusions comprise multiple
phases (Kirkham, 1971; Gustafson, 1978), which were em-
placed immediately before (early porphyries), during (inter-
mineral porphyries), near the end of (late mineral por-
phyries), and after (postmineral porphyries) the alteration
and mineralization events (Fig. 6). For example, seven phases
are mapped at Bajo de la Alumbrera (Proffett, 2003), five at
Yerington (Proffett, 2009), and four at Bingham (Redmond et
al., 2001). The immediately premineral, early porphyries and
their contiguous host rocks contain the highest grade miner-
alization in most deposits although, exceptionally, the earliest
phase can be poorly mineralized (e.g., Grasberg; MacDonald
and Arnold, 1994). Intermineral porphyries are typically less
well mineralized as they become progressively younger, and
late- and postmineral phases are barren. The earlier porphyry
bodies are not destroyed when intruded by later phases but
merely split apart, causing overall inflation of the rock pack-
age as would occur during ordinary dike emplacement. Sev-
eral criteria, in addition to metal contents and ratios
(Cu/Au/Mo) and intensity of veining, alteration, and mineral-
ization, are used to distinguish the relative ages of porphyry
intrusions: younger phases truncate veinlets in, are chilled
against, and contain xenoliths of older phases (Fig. 7; Sillitoe,
2000). Commonly, the xenoliths are largely assimilated by the
younger phases, leaving only the contained quartz veinlets,
chemically more refractory than the host porphyry, as “float-
ing” pieces (Fig. 7). Wall-rock xenoliths in the marginal parts
of some porphyry intrusions may be sufficiently abundant to
constitute intrusion breccias. The upper contacts of a few
porphyry Cu intrusions are characterized by unidirectional
solidification textures (USTs): alternating, crenulate layers of
quartz and aplite and/or aplite porphyry produced as a result
of pressure fluctuations at the transition from magmatic to
hydrothermal conditions (e.g., Kirkham and Sinclair, 1988;
Garwin, 2002; Lickfold et al., 2003; Cannell et al., 2005; Kir-
win, 2005). However, USTs are not consistently developed
and, hence, do not provide a reliable means of subdividing
porphyry Cu intrusion phases.

The porphyry intrusions in porphyry Cu deposits are exclu-
sively of I-type and magnetite-series affiliation (Ishihara, 1981),
and typically metaluminous and medium K calc-alkaline, but
may also fall into the high K calc-alkaline (shoshonitic) or al-
kaline fields (see Seedorff et al., 2005, for further details).
They span a range of compositions from calc-alkaline diorite
and quartz diorite through granodiorite to quartz monzonite
(monzogranite), and alkaline diorite through monzonite to,
uncommonly, syenite (e.g., Galore Creek, British Columbia;
Enns et al., 1995). Mo-rich porphyry Cu deposits are nor-
mally tied to the more felsic intrusions, whereas Au-rich por-
phyry Cu deposits tend to be related to the more mafic end
members, although intrusions as felsic as quartz monzonite
may also host Au-rich examples (e.g., Mamut, East Malaysia;
Kósaka and Wakita, 1978). However, Cu-poor porphyry Au
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deposits appear to occur exclusively in association with calc-
alkaline diorite and quartz diorite porphyries (e.g., Vila and
Sillitoe, 1991). The porphyry intrusions contain variable
amounts of phenocrysts, typically including hornblende
and/or biotite, and fine-grained, commonly aplitic ground-
mass, resulting in open to crowded textures. The distinctive
aplitic groundmass texture is ascribed to pressure quenching
during rapid ascent and consequent volatile loss (Burnham,
1967). The porphyry phases in some individual deposits may
have clear compositional differences (e.g., Bajo de la Alum-
brera; Proffett, 2003) and/or characteristic igneous textures
(e.g., El Salvador; Gustafson and Hunt, 1975); however, par-
ticularly in many porphyry Au and Cu-Au deposits, the dif-
ferent phases are commonly only subtly different or nearly
identical. Furthermore, textural obliteration is commonplace
in the highly altered, early porphyry phases, thereby render-
ing them difficult to distinguish from volcanic wall rocks in
some deposits (e.g., Galore Creek and Hugo Dummett). 

Isotopic dating, using the U-Pb zircon method, suggests that
the multiphase porphyry intrusions in porphyry Cu systems
can be assembled in as little as 80,000 years (Batu Hijau, In-
donesia; Garwin, 2002), but the process commonly takes much
longer. Emplacement of the porphyry stocks in many central
Andean deposits took from 2 to 5 m.y., implying that appre-
ciable time (0.5−1.5 m.y.) elapsed between emplacement of

the component phases (e.g., Ballard et al., 2001; Maksaev et
al., 2004; Padilla-Garza et al., 2004; Jones et al., 2007; Perelló
et al., 2007; Harris et al., 2008). Furthermore, there seems to
be no obvious relationship between the size of porphyry Cu
deposits and the duration of the intrusive activity, the latter
seemingly being the main parameter defining the total hy-
drothermal life spans of porphyry Cu systems. Detailed
geochronology of the high-sulfidation parts of some porphyry
Cu systems also suggests extended life spans, 1 to >1.5 m.y. at
Cerro de Pasco and Colquijirca, central Peru (Bendezú et al.,
2008; Baumgartner et al., 2009). However, these life spans
are orders of magnitude longer than the theoretically mod-
eled times required for consolidation of individual porphyry
intrusions (<40,000 yr; Cathles, 1977; Cathles et al., 1997),
porphyry Cu ore formation (<100,000 yr; McInnes et al.,
2005), or major potassic alteration events (<2,000 yr; Shino-
hara and Hedenquist, 1997; Cathles and Shannon, 2007).

Diatremes

Diatremes, upward-flared volcanic vents generated mainly
by phreatomagmatic eruptive activity, are widespread in por-
phyry Cu systems (Sillitoe, 1985), including their shallow, epi-
thermal parts (e.g., Yanacocha; Turner, 1999; Fig. 6). The di-
atremes, commonly ≥1 km in near-surface diameter and up
to at least 2 km in vertical extent (e.g., >1.8 km preserved at
the Braden diatreme, El Teniente; Howell and Molloy, 1960;
Camus, 2003), can be manifested at the paleosurface by maar
volcanoes: ephemerally lake-filled craters encircled by tuff
rings (Fig. 6). Diatreme breccias have a distinctive texture, in
which widely separated, typically centimeter-sized clasts are
dominated by rock-flour matrix containing an andesitic to
dacitic tuffaceous component (Table 1), the latter commonly
difficult to recognize where alteration is intense. The poorly
lithified, friable nature and clay-rich matrix of many diatreme
breccias give rise to recessive topography and little, if any,
surface exposure. A positive topographic expression results
only where barren, late- to postmineral porphyry plugs in-
trude the diatreme breccias (e.g., Dizon and Guinaoang,
Philippines and Batu Hijau; Sillitoe and Gappe, 1984; Sillitoe
and Angeles, 1985; Garwin, 2002; Fig. 6).

Many diatremes are late-stage additions to porphyry Cu
systems, in which they commonly postdate and either cut or
occur alongside porphyry Cu mineralization at depth (Howell
and Molloy, 1960; Sillitoe and Gappe, 1984; Perelló et al.,
1998; Garwin, 2002) but overlap with high-sulfidation events
at shallower epithermal levels (e.g., Dizon; Fig. 6). The dia-
tremes, particularly their contact zones, may localize part of
the high-sulfidation Au mineralization (e.g., Wafi-Golpu,
Papua New Guinea; Fig. 6). In a minority of cases, however,
diatremes (e.g., Grasberg, Galore Creek, and Boyongan-
Bayugo, Philippines; MacDonald and Arnold, 1994; Enns et
al., 1995; Braxton et al., 2008) or tuff-filled depressions pre-
sumably fed by one or more subjacent diatremes (e.g., Reso-
lution) are early features that act as receptive wall rocks to the
main alteration and mineralization. 

Magmatic-hydrothermal and phreatic breccias

The most common hydrothermal breccias in the deeper
parts of porphyry Cu systems are of magmatic-hydrothermal
type, the products of release of overpressured magmatic
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FIG. 7.  Schematic crosscutting relationships between early (immediately
premineral), intermineral, and late-mineral porphyry phases in porphyry Cu
stocks and their wall rocks. Veinlet truncation, quartz veinlet xenoliths,
chilled contacts, and flow-aligned phenocrysts as well as textural, grade, and
metal-ratio variations may denote the porphyry contacts, albeit generally not
all present at the same contact. Early A, B, and late D veinlets are explained
in the text and Figure 13. Note that early A veinlets are more abundant in the
early porphyry, less abundant in the early intermineral porphyry, and absent
from the two later porphyry phases. The late-mineral porphyry lacks veinlets
and displays only propylitic alteration. Modified from Sillitoe (2000). 
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 fluids (Sillitoe, 1985). Many porphyry Cu deposits contain
minor volumes (5−10%) of magmatic-hydrothermal breccia
(Fig. 6); however, even major deposits can be either breccia
free, as at Chuquicamata (Ossandón et al., 2001), or breccia
dominated, as exemplified by >5 Gt of ore-grade breccia at
Los Bronces-Río Blanco (Warnaars et al., 1985; Serrano et al.,
1996; Fig. 5a). Magmatic-hydrothermal breccias display a
 variety of textures (Table 1), which are mainly dependent on
clast form and composition, clast/matrix ratio, matrix/cement
constitution, and alteration type. They are distinguished from
the phreatomagmatic diatreme breccias by several features
(Table 1), particularly the absence of tuffaceous material. The
breccia clasts may be set in rock-flour matrix, hydrothermal
cement, fine-grained igneous material, or some combination
of the three. Igneous matrices tend to be more common at
depth near the magmatic source, where the term igneous
breccia is appropriately applied (e.g., Hunt et al., 1983; Fig. 8). 

Magmatic-hydrothermal breccias, generally occupying
steep, pipelike to irregular bodies, are commonly intermin-
eral in timing as a result of being generated in close associa-
tion with intermineral porphyry phases (Figs. 6, 8). Hence,
many of the breccias overprint preexisting alteration-mineral-
ization patterns and veinlet types (e.g., Red Mountain, Ari-
zona; Quinlan, 1981), which are incorporated as clasts. Early
breccias may display potassic alteration and have biotite, mag-
netite, and chalcopyrite cements, whereas later ones are com-
monly sericitized and contain prominent quartz, tourmaline,
specularite, chalcopyrite, and/or pyrite as cementing miner-
als. Sericitized breccia may change downward to potassic-al-
tered breccia (e.g., Los Bronces-Río Blanco; Vargas et al.,
1999; Frikken et al., 2005; Fig. 8). The metal contents of
some magmatic-hydrothermal breccias may be higher than
those of surrounding porphyry Cu stockwork mineralization,
reflecting their high intrinsic permeability. In contrast to dia-
tremes, magmatic-hydrothermal breccias are normally blind
and do not penetrate the overlying epithermal environment,
whereas downward they gradually fade away as a result of in-
creased clast/matrix ± cement ratios, in places accompanied
by pods of coarse-grained, pegmatoidal, potassic minerals
representing former sites of vapor accumulation (e.g., Los
Pelambres, central Chile; Perelló et al., 2007; Fig. 8; see
below). 

Several types of phreatic (meteoric-hydrothermal) breccia
are widely observed in porphyry Cu systems; they may be
simply subdivided into pebble dikes and, uncommonly, larger
bodies resulting from flashing of relatively cool ground water
on approach to magma, typically late-mineral porphyry dikes;
and steep, tabular to irregular bodies triggered by vapor-pres-
sure buildup beneath impermeable layers, commonly result-
ing from self sealing by silicification (Sillitoe, 1985; Table 1).
Hence, pebble dikes display downward transitions to por-
phyry intrusions (e.g., Tintic, Utah and Toquepala, southern
Peru; Farmin, 1934; Zweng and Clark, 1995), whereas the
breccias triggered by fluid confinement do not normally form
in close proximity to intrusive bodies. The pebble dikes and
related breccias are chiefly restricted to porphyry Cu de-
posits, including their marginal parts, whereas brecciation in-
duced by the fluid confinement typifies the overlying high-
sulfidation epithermal environment (Fig. 6). There, distinction
from phreatomagmatic diatreme breccias may be difficult

 because of texture obliteration caused by intense advanced
argillic alteration (e.g., Pascua-Lama). 

Phreatic breccias, as exemplified by pebble dikes, normally
contain polymictic clast populations set in muddy, rock-flour
matrices (Table 1). Vertical clast transport may be apprecia-
ble (e.g., >1 km at Tintic; Morris and Lovering, 1979). The
breccias are typically late-stage features and, hence, unal-
tered and barren. In contrast, clast transport in the phreatic
breccias produced by fluid confinement in the high-sulfida-
tion environment is more restricted, with many of the clasts
being  locally derived from the seals themselves and, hence,
commonly composed of silicified rock (Table 1). Although
rock flour may occur between the clasts, quartz, chalcedony,
alunite, barite, pyrite, and enargite are also widely observed
as cementing minerals. These phreatic breccias host ore in
many high-sulfidation Au ± Ag ± Cu deposits (e.g., Choque-
limpie, northern Chile; Gröpper et al., 1991). In contrast to
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FIG. 8.  Schematic depiction of a large magmatic-hydrothermal breccia
body genetically linked to the apex of an intermineral porphyry intrusion.
The alteration-mineralization is zoned from advanced argillic (with pyrite-
enargite) at the top through sericitic (with shallow pyrite and deep chalcopy-
rite) to potassic (with magnetite-chalcopyrite ± bornite) at the bottom, where
the breccia texture may be almost imperceptible and pegmatoidal pods are
commonplace. Injection of fine-grained, igneous matrix defines the igneous
breccia near the base of the body. The entire breccia body originally under-
went potassic alteration prior to partial overprinting by sericitic and, subse-
quently, advanced argillic assemblages, as documented by localized occur-
rence of remanent magnetite and muscovite after coarse-grained biotite in
the cement to the sericitized breccia.



the magmatic-hydrothermal breccias and pebble dikes at the
porphyry Cu level, these phreatic breccias in the high-sulfi-
dation environment may attain the paleosurface, where hy-
drothermal eruptions result in subaerial breccia accumulation
as aprons around the eruptive vents (e.g., Hedenquist and
Henley, 1985; Fig. 6). 

Orebody types and geometries

The deeper, central cores of porphyry Cu systems are oc-
cupied by porphyry Cu deposits, in which ore-zone geome-
tries depend mainly on the overall form of the host stock or
dike complex, the depositional sites of the Cu-bearing sul-
fides, and the positions of any late, low- and subore-grade
porphyry intrusions and diatremes. The forms of many por-
phyry Cu deposits mimic those of their host intrusions; thus,
cylindrical stocks typically host cylindrical orebodies (Fig. 6),
whereas laterally extensive dikes give rise to orebodies with
similar narrow, elongate shapes (e.g., Hugo Dummett;
Khashgerel et al., 2008). Many porphyry Cu deposits are
formed as vertically extensive bodies, which become progres-
sively lower grade both outward and downward, whereas oth-
ers have a bell- or cap-like form because little Cu was precip-
itated internally at depth (e.g., Resolution; Ballantyne et al.,
2003). The tops of the orebodies tend to be relatively abrupt
and controlled by the apices of quartz veinlet stockworks (see
below). The shape of any porphyry Cu orebody may undergo
significant modification as a result of emplacement of late- to
postmineral rock volumes (e.g., Fig. 5a), as exemplified by the
low-grade cores caused by internal emplacement of late-
 mineral porphyry phases (e.g., Santo Tomas II, Philippines;
Sillitoe and Gappe, 1984) and, much less commonly, late-
stage diatremes (e.g., El Teniente; Howell and Molloy, 1960;
Camus, 2003). A few deposits, instead of dying out either
gradually (e.g., El Salvador; Gustafson and Quiroga, 1995) or
fairly abruptly (e.g., H14-H15 at Reko Diq, Pakistan) at
depth, have knife-sharp bases as a result of truncation by late-
mineral intrusions (e.g., Santo Tomas II; Sillitoe and Gappe,
1984). Coalescence of closely spaced porphyry Cu deposits
enhances size potential (e.g., H14-H15 at Reko Diq; Perelló
et al., 2008)

Development of wall rock-hosted orebodies alongside por-
phyry Cu deposits is most common where receptive carbon-
ate rocks are present (Fig. 6). Deposit types include proximal
Cu ± Au and, less commonly, distal Au and/or Zn-Pb skarns
(e.g., Meinert, 2000; Meinert et al., 2005); more distal, car-
bonate-replacement (chimney-manto), massive sulfide bodies
dominated by either Cu (e.g., Superior district, Arizona and
Sepon district, Laos [Fig. 9c]; Paul and Knight, 1995; Loader,
1999) or, more commonly, Zn, Pb, Ag ± Au (e.g., Recsk, Hun-
gary; Kisvarsanyi, 1988) beyond the skarn front (Fig. 6); and,
uncommonly, sediment-hosted (distal-disseminated; Cox and
Singer, 1990) Au concentrations on the fringes of the systems
(e.g., Barneys Canyon and Melco, Bingham district; Babcock
et al., 1995; Gunter and Austin, 1997; Cunningham et al.,
2004; Fig. 9a). Continuity between some of these carbonate
rock-hosted deposits is possible; for example, transitions from
proximal Cu-Au to distal Au skarn in the Copper Canyon dis-
trict (Cary et al., 2000) and distal Zn-Pb-Cu-Ag skarn to car-
bonate-replacement Zn-Pb-Ag at Groundhog, Central dis-
trict, New Mexico (Meinert, 1987). All these carbonate

rock-hosted ore types are replacements of receptive beds,
commonly beneath relatively impermeable rock units (e.g.,
Titley, 1996) and, hence, tend to be strata bound, although
high- and low-angle fault control is also widely emphasized
(e.g., proximal skarns at Ok Tedi, Papua New Guinea, and
Antamina, central Peru; Rush and Seegers, 1990; Love et al.,
2004).

Distal ore formation in porphyry Cu systems is less com-
mon in igneous or siliciclastic wall rocks, within propylitic
halos, where fault- and fracture-controlled, subepithermal
Zn-Pb-Cu-Ag ± Au veins of currently limited economic im-
portance tend to be developed (e.g., Mineral Park; Eidel et
al., 1968 and Los Bronces-Río Blanco; Figs. 5a, 6). Neverthe-
less, larger tonnage orebodies may occur where permeable
wall rocks exist, as exemplified by the stacked, Au-bearing
mantos in amygdaloidal and brecciated andesitic flow tops at
Andacollo, Chile (Reyes, 1991). 

In the lithocap environment—typically located above, are-
ally more extensive than, and commonly overprinting por-
phyry Cu deposits (Fig. 6; see below)—high-sulfidation epi-
thermal Au, Ag, and/or Cu deposits are characteristic;
nevertheless, the preserved parts of many lithocaps are es-
sentially barren. The deeper level high-sulfidation deposits,
the Cordilleran base metal lodes of Einaudi (1982), tend to be
characterized by massive sulfides, commonly rich in the Cu-
bearing sulfosalts (enargite, luzonite, and/or famatinite). They
commonly occur as tabular veins overprinting porphyry Cu
deposits, like those at Butte (Meyer et al., 1968), Escondida
(Ojeda, 1986), Chuquicamata (Ossandón et al., 2001), and
Collahuasi, northern Chile (Masterman et al., 2005; Fig. 6).
Alternatively, for up to several kilometers beyond porphyry
Cu deposits, they comprise structurally controlled replace-
ments and hydrothermal breccias, either in volcanic rocks as
at Lepanto in the Mankayan district (Garcia, 1991; Heden-
quist et al., 1998), Nena in the Frieda River district, Papua
New Guinea (Espi, 1999), and Chelopech, Bulgaria (Cham-
befort and Moritz, 2006) or, where lithocaps impinge on car-
bonate rocks, as deposits like Smelter in the Marcapunta sec-
tor at Colquijirca (Vidal and Ligarda, 2004; Bendezú and
Fontboté, 2009). In contrast, much larger tonnage, dissemi-
nated Au ± Ag orebodies are more typical of the shallower
(<500 m) parts of lithocaps (Sillitoe, 1999b), as exemplified
by Yanacocha (Harvey et al., 1999) and Pascua-Lama
(Chouinard et al., 2005), although much deeper development
of disseminated Cu-Au deposits is also relatively common
(e.g., Tampakan; Rohrlach et al., 1999). 

Intermediate-sulfidation epithermal precious metal de-
posits, containing Zn-Pb-Ag ± Cu ± Au as well as Mn-bear-
ing carbonates, rhodonite, and quartz, occur alongside litho-
caps but typically spatially separate from the high-sulfidation
orebodies, as observed in the case of the Victoria and Teresa
vein systems at Lepanto (Claveria, 2001; Hedenquist et al.,
2001) and in the Collahuasi district (Masterman et al., 2005;
Fig. 6). Locally, however, the intermediate-sulfidation and
both Cor dilleran lode and shallow, disseminated high-sulfi-
dation mineralization types display transitional mineralogic
relationships, as exemplified by the so-called Main Stage
veins at Butte (Meyer et al., 1968) and the disseminated A
and Link Au zones at Wafi-Golpu (Leach, 1999; Ryan and
Vigar, 1999). The intermediate-sulfidation epithermal veins
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are the shallow-level (<1 km paleodepth) counterparts of the
Zn-Pb-Cu-Ag ± Au veins located alongside porphyry Cu de-
posits, but no direct connection between the two types is ev-
ident (Fig. 6). The massive, high-sulfidation pyrite-enargite
replacements in carbonate rocks are also locally transitional
outward through high- to intermediate-sulfidation Zn-Pb-Ag
ore, a continuum observed in the Tintic and Colquijirca dis-
tricts (Lindgren and Loughlin, 1919; Bendezú et al., 2003;
Bendezú and Fontboté, 2009).

Alteration-mineralization zoning in porphyry Cu deposits

Porphyry Cu deposits display a consistent, broad-scale alter-
ation-mineralization zoning pattern that comprises, centrally
from the bottom upward, several of sodic-calcic, potassic,

chlorite-sericite, sericitic, and advanced argillic (cf. Meyer
and Hemley, 1967; Table 2; Figs. 10, 11). Chloritic and propy-
litic alteration develop distally at shallow and deeper levels,
respectively (Fig. 10). Equating chlorite-sericite alteration—
the abbreviated name used by Hedenquist et al. (1998) for
the sericite-clay-chlorite (SCC) of Sillitoe and Gappe (1984)
—with Meyer and Hemley’s (1967) low-temperature inter-
mediate argillic type (e.g., Hedenquist et al., 1998; Sillitoe,
2000; Seedorff et al., 2005; Bouzari and Clark, 2006) causes
confusion and should probably be discontinued. Phyllic
(Lowell and Guilbert, 1970) and sericitic are synonyms. 

The alteration-mineralization zoning sequence typically af-
fects several cubic kilometers of rock (e.g., Lowell and Guil-
bert, 1970; Beane and Titley, 1981), although sericitic and,
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particularly, advanced argillic alteration are much less well
developed in porphyry Cu deposits associated with alkaline
than with calc-alkaline intrusions (Lang et al., 1995; Sillitoe,
2002; Holliday and Cooke, 2007), reflecting control of the
K+/H+ ratio by magma chemistry (e.g., Burnham, 1979). Spe-
cific opaque mineral assemblages are intrinsic parts of each
alteration type (Table 2; Fig. 12) because of the direct linkage
between sulfidation state, the chief control on sulfide assem-
blages, and solution pH, a principal control of alteration type
(Barton and Skinner, 1967; Meyer and Hemley, 1967; Ein-
audi et al., 2003; Fig. 12). Sulfidation state, a function of S fu-
gacity and temperature, changes from low through interme-
diate to high as temperature declines (Barton and Skinner,
1967; Einaudi et al., 2003). In general, the alteration-miner-
alization types become progressively younger upward (Fig.
12), with the result that the shallower alteration-mineraliza-
tion zones invariably overprint and at least partly reconstitute
deeper ones. 

Sodic-calcic alteration, commonly magnetite bearing (Table
2), is normally rather poorly preserved at depth in some por-
phyry Cu deposits, commonly in the immediate wall rocks to
the porphyry intrusions (e.g., Panguna, Papua New Guinea
and El Teniente; Ford, 1978; Cannell et al., 2005), a position
that may give rise to confusion with propylitic alteration (Fig.
10). Nevertheless, it also characterizes the centrally located
zones of some porphyry Cu stocks (e.g., Koloula, Solomon Is-
lands and Island Copper, British Columbia; Chivas, 1978;
Perelló et al., 1995; Arancibia and Clark, 1996). Sodic-calcic
alteration is typically sulfide and metal poor (except for Fe as
magnetite) but can host mineralization in Au-rich porphyry
Cu deposits (e.g., Nugget Hill, Philippines), in some of which
hybrid potassic-calcic (biotite-actinolite-magnetite) assem-
blages are also commonplace (e.g., Santo Tomas II, Ridgeway,
and Cotabambas, southern Peru; Sillitoe and Gappe, 1984;
Wilson et al., 2003; Perelló et al., 2004a).

Large parts of many porphyry Cu deposits (e.g., Lowell and
Guilbert, 1970; Titley, 1982), especially deeply formed (e.g.,
Butte; Rusk et al., 2004, 2008a) or relatively deeply eroded
examples like El Abra (Ambrus, 1977; Dean et al., 1996) and
Gaby (Gabriela Mistral), northern Chile (Camus, 2001,
2003), are made up predominantly of potassic alteration,
which grades marginally into generally weakly developed
propylitic zones (Fig. 10). Biotite is the predominant alter-
ation mineral in relatively mafic porphyry intrusions and host
rocks, whereas K-feldspar increases in abundance in more
felsic, granodioritic to quartz monzonitic settings. Sodic pla-
gioclase may be an accompanying alteration mineral in both
settings. Locally, texture-destructive quartz-K ± Na-feldspar
flooding overprints and destroys the more typical potassic as-
semblages (e.g., Chuquicamata; Ossandón et al., 2001). The
chalcopyrite ± bornite ore in many porphyry Cu deposits is
largely confined to potassic zones (Table 2; Fig. 12), with one
or more bornite-rich centers characterizing the deeper, cen-
tral parts of many deposits. In some bornite-rich centers, the
sulfidation state is low enough to stabilize digenite ± chal-
cocite (Einaudi et al., 2003; Table 2). Chalcopyrite-bornite
cores are transitional outward to chalcopyrite-pyrite annuli,
which, with increasing sulfide contents, grade into pyrite
halos, typically parts of the surrounding propylitic zones
(Table 2). Pyrrhotite may accompany the pyrite where re-
duced host rocks are present (e.g., Kósaka and Wakita, 1978;
Perelló et al., 2003b). The potassic alteration affects the early
and intermineral porphyry generations (Fig. 7) and many in-
termineral magmatic-hydrothermal breccias as well as vari-
able volumes of wall rocks. The potassic-altered wall rocks
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range from restricted veneers near the stock or dike contacts
to kilometer-scale zones, such as those in the mafic host litho-
logic units mentioned previously at El Teniente, Resolution,
and Oyu Tolgoi. The potassic alteration generally becomes
less intense from the older to younger porphyry phases, al-
though the late-mineral intrusions postdate it and display a
propylitic assemblage (Fig. 7), albeit of later timing than the
propylitic halos developed peripheral to potassic zones.

Chlorite-sericite alteration (Table 2), giving rise to distinc-
tive, pale-green rocks, is widespread in the shallower parts of
some porphyry Cu deposits, particularly Au-rich examples,
where it overprints preexisting potassic assemblages (Figs. 10,
11). The alteration is typified by partial to complete transfor-
mation of mafic minerals to chlorite, plagioclase to sericite
(fine-grained muscovite) and/or illite, and magmatic and any
hydrothermal magnetite to hematite (martite and/or specu-
larite), along with deposition of pyrite and chalcopyrite. Al-
though Cu and/or Au tenors of the former potassic zones may
undergo depletion during the chlorite-sericite overprints
(e.g., Esperanza, northern Chile; Perelló et al., 2004b), metal
introduction is also widely recognized (e.g., Leach, 1999;
Padilla Garza et al., 2001; Harris et al., 2005; Masterman et
al., 2005) and, at a few deposits, is considered to account for
much of the contained Cu (e.g., Cerro Colorado, northern
Chile; Bouzari and Clark, 2006).

Sericitic alteration (Table 2) in porphyry Cu deposits nor-
mally overprints and wholly or partially destroys the potassic
and chlorite-sericite assemblages (Figs. 10−12), although
sericitic veinlet halos are zoned outward to chlorite-sericite
alteration in places (e.g., Dilles and Einaudi, 1992). The degree
of overprinting is perhaps best appreciated in some magmatic-
hydro thermal breccia bodies in which isolated magnetite ag-
gregates occur as stranded remnants in sericitic or chlorite-
sericite zones up to 1 km above the magnetite-cemented,
potassic parts (e.g., Chimborazo, northern Chile; Fig. 8).
Sericitic alteration may be subdivided into two different types:
an uncommon, early variety that is greenish to greenish-gray
in color and a later, far more common and widespread, white
variety. In the few deposits where it is recognized, the early,
greenish sericitic alteration is centrally located and hosts a
low sulfidation-state chalcopyrite-bornite assemblage, which
is commonly ore grade (e.g., Chuquicamata; Ossandón et al.,
2001). The late, white sericitic alteration has varied distribu-
tion patterns in porphyry Cu deposits. It may constitute annu-
lar zones separating the potassic cores from propylitic halos,
as emphasized in early porphyry Cu models (Jerome, 1966;
Lowell and Guilbert, 1970; Rose, 1970), but is perhaps more
common as structurally controlled or apparently irregular re-
placements within the upper parts of chlorite-sericite and/or
potassic zones (Fig. 10). The sericitic alteration is commonly
pyrite dominated, implying effective removal of the Cu (± Au)
present in the former chlorite-sericite and/or potassic assem-
blages. However, sericitic alteration may also constitute ore
where appreciable Cu remains with the pyrite, either in the
form of chalcopyrite or as high sulfidation-state assemblages
(typically, pyrite-bornite, pyrite-chalcocite, pyrite-covellite, pyrite-
tennantite, and pyrite-enargite; Table 2; cf. Einaudi et al., 2003). 

The main development of these bornite-, chalcocite-, and
covellite-bearing, high-sulfidation assemblages is largely con-
fined to white sericitic alteration that overprints now-barren

quartz veinlet stockworks (see below). These high-sulfidation
assemblages commonly have higher Cu contents than the for-
mer potassic alteration, resulting in hypogene enrichment
(Brimhall, 1979), although any Au may be depleted (e.g.,
Wafi-Golpu; Sillitoe, 1999b). The Cu-bearing sulfides typi-
cally occur as fine-grained coatings on disseminated pyrite
grains, which leads to recognition difficulties in deposits that
also underwent supergene Cu sulfide enrichment (e.g.,
Chuquicamata, Ossandón et al., 2001); indeed, the hypogene
contribution is commonly not distinguished from the super-
gene enrichment products (e.g., Taca Taca Bajo, Argentina;
Rojas et al., 1999).

The root zones of advanced argillic lithocaps, commonly at
least partly structurally controlled, may overprint the upper
parts of porphyry Cu deposits, where the sericitic alteration is
commonly transitional upward to quartz-pyrophyllite (Fig.
10), an assemblage widespread in the deep, higher tempera-
ture parts of many lithocaps (e.g., El Salvador; Gustafson and
Hunt, 1975; Watanabe and Hedenquist, 2001). Elsewhere,
however, lower temperature quartz-kaolinite is the dominant
overprint assemblage (e.g., Caspiche, northern Chile). The
advanced argillic alteration preferentially affects lithologic
units with low (e.g., quartz sandstone, felsic igneous rocks)
rather than high (mafic igneous rocks) acid-buffering capaci-
ties. At several localities, the advanced argillic alteration at
the bottoms of lithocaps displays a characteristic patchy tex-
ture, commonly defined by amoeboid pyrophyllite patches
embedded in silicified rock (e.g., Escondida and Yanacocha;
Padilla Garza et al., 2001; Gustafson et al., 2004). However,
the patches may also comprise alunite or kaolinite, suggesting
that the texture may result by either preferential nucleation of
any common advanced argillic mineral or even advanced
argillic overprinting of a nucleation texture developed during
earlier potassic or chlorite-sericite alteration of fragmental rocks
(e.g., Hugo Dummett; Khashgerel et al., 2008, and Caspiche).

The vertical distribution of the alteration-mineralization
types in porphyry Cu deposits depends on the degree of over-
printing or telescoping, the causes of which are addressed
further below. In highly telescoped systems, the advanced
argillic lithocaps impinge on the upper parts of porphyry
stocks (Fig. 10) and their roots may penetrate downward for
>1 km. In such situations, the advanced argillic alteration may
be 1 to >2 m.y. younger than the potassic zone that it over-
prints (e.g., Chuquicamata and Escondida; Ossandón et al.,
2001; Padilla-Garza et al., 2004), reflecting the time needed
for the telescoping to take place. Where telescoping is lim-
ited, however, the lithocaps and potassic-altered porphyry
stocks may be separated by 0.5 to 1 km (Sillitoe, 1999b), a gap
typically occupied by pyritic chlorite-sericite alteration (Fig.
11).

Where carbonate (limestone and dolomite) instead of ig-
neous or siliciclastic rocks host porphyry Cu deposits, calcic
or magnesian exoskarn is generated in proximity to the por-
phyry intrusions, whereas marble is produced beyond the
skarn front (Fig. 10). In the case of limestone protoliths, an-
hydrous, prograde andraditic garnet-diopsidic pyroxene skarn
forms contemporaneously with the potassic alteration of non-
carbonate lithologic units, whereas hydrous, retrograde skarn,
commonly containing important amounts of magnetite, acti-
nolite, epidote, chlorite, smectite, quartz, carbonate, and iron
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sulfides, is the equivalent of the chlorite-sericite and sericitic
assemblages (Einaudi et al., 1981; Meinert et al., 2003). Dis-
tal Au skarns are typically more reduced (pyroxene rich) than
their proximal counterparts (Fortitude, Copper Canyon dis-
trict; Myers and Meinert, 1991; Fig. 10). A quartz-pyrite as-
semblage replaces any carbonate rocks incorporated in ad-
vanced argillic lithocaps (e.g., Bisbee, Arizona; Einaudi,
1982). Endoskarn tends to be volumetrically minor (Beane
and Titley, 1981; Meinert et al., 2005). The massive sulfide
carbonate-replacement deposits are normally enveloped by
marble. Any sediment-hosted Au mineralization on the
fringes of carbonate rock-hosted porphyry Cu systems forms
where rock permeability is enhanced by decalcification (Fig.
10), including sanding of dolomite, but also locally occluded
by Au-related jasperoid formation (e.g., Bingham and Sepon
districts; Babcock et al., 1995; Smith et al., 2005; Fig. 9a, d). 

Porphyry Cu veinlet relationships

The veinlet sequence in porphyry Cu deposits, first elabo-
rated by Gustafson and Hunt (1975) at El Salvador and
widely studied since (e.g., Hunt et al., 1983; Dilles and Ein-
audi, 1992; Gustafson and Quiroga, 1995; Redmond et al.,
2001; Pollard and Taylor, 2002; Cannell et al., 2005; Master-
man et al., 2005), is highly distinctive. In a general way, the
veinlets may be subdivided into three groups (Table 2; Fig.
13): (1) early, quartz- and sulfide-free veinlets containing one
or more of actinolite, magnetite (M type), (early) biotite (EB

type), and K-feldspar, and typically lacking alteration sel-
vages; (2) sulfide-bearing, granular quartz-dominated veinlets
with either narrow or no readily recognizable alteration sel-
vages (A and B types); and (3) late, crystalline quartz-sulfide
veins and veinlets with prominent, feldspar-destructive alter-
ation selvages (including D type). Group 1 and 2 veinlets are
mainly emplaced during potassic alteration, whereas group 3
accompanies the chlorite-sericite, sericitic, and deep ad-
vanced argillic overprints. Narrow, mineralogically complex
quartz-sericite-K-feldspar-biotite veinlets with centimeter-
scale halos defined by the same minerals (± andalusite ±
corundum) along with abundant, finely disseminated chal-
copyrite ± bornite characterize the changeover from group 1
to 2 veinlets in a few deposits, although they may have been
confused elsewhere with D-type veinlets because of their
eye-catching halos; they are termed early dark micaceous
(EDM) halo veinlets at Butte (Meyer, 1965; Brimhall, 1977;
Rusk et al., 2008a) and Bingham (Redmond et al., 2004), and
type 4 (T4) veinlets at Los Pelambres (Atkinson et al., 1996;
Perelló et al., 2007). Group 3 also includes uncommon, but
economically important massive chalcopyrite ± bornite ±
chalcocite veinlets at the high-grade Grasberg (Pollard and
Taylor, 2002; I. Kavalieris, pers. commun., 1999), Hugo Dum-
mett (Khashgerel et al., 2008), and Resolution deposits as well
as elsewhere. 

Many porphyry Cu deposits display single veinlet sequences
that comply with the generalizations summarized above and
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in Figure 13 and Table 2, but repetitions of group 1 and 2 vein-
lets, for example, early biotite, EDM halo, and A types cut by
lesser numbers of later EDM halo and A types (e.g., Bingham;
Redmond et al., 2001), occur where time gaps between por-
phyry phases are sufficiently large; however, group 2 and 3
veinlets are only uncommonly repeated. Additional complica-
tions are widely introduced by repetitive veinlet reopening
during subsequent veining events. Much of the metal in many
porphyry Cu deposits is contained in the quartz-dominated,
group 2 veinlets and as disseminated grains in the intervening
potassic-altered rocks, although some of the late, group 3
quartz-sulfide veins and their wall rocks may also be important
contributors. Irrespective of whether the Cu-bearing sulfide
minerals are coprecipitated with veinlet quartz or, as generally
seems to be the case, introduced paragenetically later (e.g.,
Redmond et al., 2001, 2004), a particularly strong correlation
exists between quartz veinlet intensity and metal content in
many porphyry Cu deposits, particularly in Au-rich examples
(Sillitoe, 2000). However, the porphyry Cu-Au deposits associ-
ated with alkaline rocks, particularly those in British Colum-
bia, are largely devoid of veinlets (Barr et al., 1976). Once
formed, the quartz-bearing veinlets are permanent features
that are not erased during subsequent alteration overprinting,
although their metal contents may be wholly or partially re-
moved (see above). Therefore recognition of A- and B-type
veinlets in sericitic or advanced argillic zones testifies unam-
biguously to the former presence of potassic alteration.

The A-type veinlets range from stockworks to subparallel,
sheeted arrays, the latter particularly common in Au-rich por-
phyry deposits (Sillitoe, 2000). Few, if any, stockworks are
truly multidirectional and one or more preferred veinlet ori-
entations are the norm. These may reflect district-scale tec-
tonic patterns (e.g., Heidrick and Titley, 1982; Lindsay et al.,
1995) or, where concentric and radial arrays predominate,
control by magma ascent and/or withdrawal in the subjacent
parental chambers (e.g., El Teniente; Cannell et al., 2005).
The quartz veinlet stockworks are most intense in and around
the early porphyry intrusions, where they may constitute as
much as 90 to 100 percent of the rock (e.g., Ok Tedi and
Hugo Dummett; Rush and Seegers, 1990; Khashgeral et al.,
2006), and die out gradually both laterally into the wall rocks
(e.g., Sierrita-Esperanza, Arizona; Titley et al., 1986) and
downward (e.g., El Salvador; Gustafson and Quiroga, 1995);
however, they tend to have more clearcut upper limits, just a
few tens of meters above the apices of the porphyry intru-
sions, in the few deposits where relevant data are available
(e.g., Guinaoang, Wafi-Golpu, and Hugo Dummett; Sillitoe
and Angeles, 1985; Sillitoe, 1999b; Khashgeral et al., 2006).
The quartz veinlets commonly cut proximal prograde ex-
oskarn (Einaudi, 1982) but do not extend into the more distal
carbonate rock-hosted ore types. Locally, early A-type vein-
lets displaying aplitic centers or along-strike transitions to
aplite and/or aplite porphyry (vein dikes) are observed (e.g.,
Gustafson and Hunt, 1975; Heithersay et al., 1990; Lickfold
et al., 2003; Rusk et al., 2008a). The earliest A-type veinlets
may be sinuous and have nonmatching margins, features as-
cribed to formation under high-temperature, overall ductile
conditions, whereas later veinlets are more planar. 

Much of the Mo in many porphyry Cu-Mo deposits occurs
in the B-type veinlets, in marked contrast to the Cu dominance

of the A-type generations, but D-type veinlets may also con-
tain appreciable amounts of molybdenite in some deposits.
The B-type veinlets are typically absent from Au-rich, Mo-
poor porphyry Cu deposits (Fig. 13b). The D-type veinlets,
far more abundant in porphyry Cu-Mo than Cu-Au deposits
(Fig. 13a), may also occur as structurally controlled swarms
(e.g., El Abra; Dean et al., 1996), a characteristic particularly
evident in the case of the late-stage, meter-scale, enargite-
bearing, massive sulfide veins spanning the upper parts of
porphyry Cu deposits and lower parts of overlying lithocaps
(Fig. 6; see above). 

Magnetite ± actinolite (M-type) and quartz-magnetite (A-
type) veinlets are far less common in Mo- than Au-rich por-
phyry Cu deposits (Fig. 13), the latter typified by particularly
elevated hydrothermal magnetite contents, commonly attain-
ing 5 to 10 vol percent (Sillitoe, 1979, 2000; MacDonald and
Arnold, 1994; Proffett, 2003). The dominant veinlets in most
Au-only porphyry deposits, as documented in the Maricunga
belt, are distinctly banded and comprise layers of both translu-
cent and dark-gray quartz (Vila and Sillitoe, 1991), the color of
the latter commonly caused by abundant vapor-rich fluid in-
clusions (Muntean and Einaudi, 2000). These banded veinlets
are ascribed to the shallowness of porphyry Au formation (<1
km; Vila and Sillitoe, 1991; Muntean and Einaudi, 2000).

Anhydrite and tourmaline are prominent veinlet, breccia-
filling, and alteration minerals in many porphyry Cu deposits
(Table 2), including associated skarns. The anhydrite, attain-
ing 5 to 15 percent of rock volumes, occurs in small amounts
in most group 2 and 3 veinlet types as well as in the form of
disseminated grains in the intervening altered rocks but com-
monly also constitutes end-stage, nearly monomineralic vein-
lets. Absence of anhydrite to depths of several hundred me-
ters beneath the current surface in many porphyry Cu
systems is normally due to supergene dissolution (see Sillitoe,
2005). Tourmaline may occur in minor amounts in several
veinlet types, even those formed early in deposit histories
(e.g., T4 veinlets al Los Pelambres; Perelló et al., 2007), but
it is most abundant with quartz and/or pyrite in D-type vein-
let generations and any associated magmatic-hydrothermal
breccias affected by sericitic alteration (Fig. 8). 

Advanced argillic lithocaps

The upper parts of porphyry Cu systems, mainly at shallower
levels than their porphyry intrusions, are characterized by
lithocaps: lithologically controlled zones of pervasive advanced
argillic alteration with structurally controlled components,
 including their subvertical root zones (Figs. 4, 6, 10; Table 2;
Sillitoe, 1995a). Original lithocaps have areal extents of sev-
eral to >10 and, locally, up to 100 km2 and thicknesses of >1
km, and hence are much more extensive than the underlying
porphyry Cu deposits. Indeed, two or more porphyry Cu de-
posits may underlie some large, coalesced lithocaps (Fig. 4),
which, as noted above, may have formed progressively over
periods of up to several million years (e.g., Yanacocha;
Gustafson et al., 2004; Longo and Teal, 2005). Most observed
lithocaps are only erosional remnants, which may either
wholly or partially overlie and conceal porphyry Cu deposits
(e.g., Wafi-Golpu; Sillitoe, 1999b) or occur alongside them and,
hence, above propylitic rock (e.g., Nevados del Famatina, Ar-
gentina, Batu Hijau, and Rosia Poieni, Romania; Lozada-
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Calderón and McPhail, 1996; Clode et al., 1999; Milu et al.,
2004; Figs. 6, 10). Many lithocaps are vertically zoned, from
the previously described quartz-pyrophyllite at depth to pre-
dominant quartz-alunite and residual quartz—the residue of
extreme base leaching (Stoffregen, 1987) with a vuggy ap-
pearance that reflects the original rock texture—at shallower
levels where the causative fluid was cooler and, hence, more
acidic (Giggenbach, 1997; Fig. 10). The roots of lithocaps may
also contain the relatively high temperature species, an-
dalusite and corundum (>~370ºC; Hemley et al., 1980), as ac-
companiments to pyrophyllite and/or muscovite (e.g., Cabang
Kiri, Indonesia, El Salvador, and Cerro Colorado; Lowder
and Dow, 1978; Watanabe and Hedenquist, 2001; Bouzari
and Clark, 2006). Where the fluids that cause advanced
argillic alteration are F rich, topaz, zunyite, and fluorite are
lithocap minerals (e.g., Hugo Dummett; Perelló et al., 2001;
Khashgerel et al., 2006, 2008, and Resolution). The principal
borosilicate mineral in lithocaps is dumortierite rather than
tourmaline. The more structurally and lithologically confined
components of lithocaps, termed ledges rather than veins be-
cause they are mainly the products of rock replacement
rather than incremental open-space filling, display well-de-
veloped alteration zoning (e.g., Steven and Ratté, 1960; Stof-
fregen, 1987), with cores of vuggy, residual quartz, and asso-
ciated silicification rimmed outward (and downward) by
consecutive bands of quartz-alunite, quartz-pyrophyllite/dick-
ite/kaolinite (pyrophyllite and dickite at hotter, deeper levels),
and chlorite-illite/smectite. 

Although all these alteration zones are pyritic, the Au-, Ag-,
and Cu-bearing, high sulfidation-state assemblages (com-
monly pyrite-enargite and pyrite-covellite; Table 2; Fig. 12)
tend to be confined to the vuggy, residual quartz and silicified
rock, the latter normally better mineralized where phreatic
breccias are present (see above). Apart from the massive,
commonly enargite-bearing sulfide veins and replacement
bodies in the deeper parts of some lithocaps (see above),
veins and veinlets are generally only poorly developed, with
much of the pyrite and any associated sulfides being in dis-
seminated form. Open-space filling is also uncommon, except
in phreatic breccias and unusual, isolated veins (e.g., La Meji-
cana alunite-pyrite-famatinite vein at Nevados del Famatina;
Lozada-Calderón and McPhail, 1996). Barite and native S are
common late-stage components of many ledges.

These advanced argillic alteration zones extend upward to
the sites of paleowater tables, which may be defined, if suitable
aquifers (e.g., fragmental volcanic rocks) were present, by sub-
horizontal, tabular bodies of massive opaline or chalcedonic
silicification, up to 10 m or so thick; the low crystallinity is
caused by the low temperature (~100ºC) of silica deposition.
The overlying vadose zones are marked by easily recognizable,
steam-heated alteration rich in fine-grained, powdery cristo-
balite, alunite, and kaolinite (Sillitoe, 1993, 1999b; Fig. 10). 

Metal zoning

Metal zoning in porphyry Cu systems is well documented,
particularly at the deeper, porphyry Cu levels (e.g., Jerome,
1966; Titley, 1993). There, Cu ± Mo ± Au characterize the
potassic, chlorite-sericite, and sericitic cores of systems. How-
ever, in Au-rich porphyry Cu deposits, the Au, as small (<20
µm) grains of high (>900) fineness native metal and in solid

solution in bornite and, to a lesser degree, chalcopyrite (e.g.,
Arif and Baker, 2002), and Cu are introduced together as
components of centrally located potassic zones; hence, the
two metals normally correlate closely (Sillitoe, 2000; Ulrich
and Heinrich, 2001; Perelló et al., 2004b). Gold grades may
be up to ~50 percent higher in bornite-rich than chalcopyrite-
dominated potassic assemblages, which has been explained
by the experimental observation that bornite solid solution is
capable of holding up to one order of magnitude more Au
than intermediate solid solution (ISS), the high-temperature
precursors of bornite and chalcopyrite, respectively (Simon et
al., 2000; Kesler et al., 2002). The Au grains in some deposits
contain minor amounts of PGE minerals, particularly Pd tel-
lurides (Tarkian and Stribrny, 1999). In contrast, Cu and Mo
correlate less well, with spatial separation of the two metals
commonly resulting from the different timing of their intro-
duction (e.g., Los Pelambres; Atkinson et al., 1996). In many
Au-rich porphyry Cu deposits, Mo tends to be concentrated
as external annuli partly overlapping the Cu-Au cores (e.g.,
Saindak, Pakistan, Cabang Kiri, Batu Hijau, Bajo de la Alum-
brera, and Esperanza; Sillitoe and Khan, 1977; Lowder and
Dow, 1978; Ulrich and Heinrich, 2001; Garwin, 2002; Prof-
fett, 2003; Perelló et al., 2004b). The Bingham, Island Cop-
per, and Agua Rica, Argentina, porphyry Cu-Au-Mo deposits
are exceptions to this generalization because of their deep,
centrally located molybdenite zones (John, 1978; Perelló et
al., 1995, 1998).

The Cu ± Mo ± Au cores typically have kilometer-scale
halos defined by anomalous Zn, Pb, and Ag values that reflect
lower temperature, hydrothermal conditions (Fig. 9a, b). In
some systems, Mn (±Ag) is also markedly enriched in the out-
ermost parts of the halos (e.g., Butte; Meyer et al., 1968).
These Zn-Pb-Ag ± Mn halos commonly coincide spatially
with propylitic alteration zones but are invariably best defined
in the distal skarn environment (e.g., Meinert, 1987; Meinert
et al., 2005), beyond which even more distal Au-As ± Sb
zones may be developed (e.g., Bingham and Sepon districts;
Babcock et al., 1995; Cunningham et al., 2004; Smith et al.,
2005; Fig. 9a, c). Peripheral veins cutting propylitic halos may
also be Au rich, and at Mineral Park an outward zoning from
Pb-Zn to Au-Ag is evident (Eidel et al., 1968; Lang and Eas-
toe, 1988; Fig. 9b). Nevertheless, in some porphyry Cu de-
posits, these halo metals, particularly Zn, occur as late-stage
veinlet arrays overprinting the Cu-dominated cores rather
than peripherally (e.g., Chuquicamata; Ossandón et al., 2001).

In a general sense, the broad-scale zoning pattern devel-
oped in the deeper parts of porphyry Cu systems persists into
the overlying lithocap environment where any Cu and Au
(±Ag) commonly occur approximately above the underlying
porphyry Cu deposits, albeit commonly areally more exten-
sively, particularly where structural control is prevalent. The
main geochemical difference between the Cu-Au zones in
porphyry Cu deposits and those in the overlying lithocaps is
the elevated As (±Sb) contents consequent upon the abun-
dance of the Cu sulfosalts in the latter. Nevertheless, the
lithocap mineralization also contains greater albeit trace
amounts of Bi, W, Sn, and/or Te (e.g., Einaudi, 1982) as well
as appreciable Mo. The Cu/Au ratios of lithocap-hosted, high-
sulfidation mineralization tend to decrease upward, with the
result that most major high-sulfidation Au (±Ag) deposits
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occur in the shallow parts of lithocaps, commonly—but not
always—with their tops immediately below the former pale-
owater table positions (Sillitoe, 1999b). Nevertheless, super-
gene leaching commonly masks the original Cu distribution
pattern. Any intermediate-sulfidation precious metal miner-
alization developed alongside the lithocaps contains much
higher contents of Zn, Pb, Ag, and Mn than the high-sulfida-
tion orebodies, in keeping with the situation described above
from the porphyry Cu level. The shallow-level, steam-heated
and paleowater-table zones are typically devoid of precious
and base metals and As and Sb, unless telescoped onto the
underlying mineralization as a result of water-table descent,
but commonly have elevated Hg contents (e.g., Pascua-Lama;
Chouinard et al., 2005).

Genetic Model

Magma and fluid production

Porphyry Cu systems typically span the upper 4 km or so
of the crust (Singer et al., 2008; Figs. 6, 10), with their cen-
trally located stocks being connected downward to parental
magma chambers at depths of perhaps 5 to 15 km (Cloos,
2001; Richards, 2005; Fig. 4). The parental chambers, tend-
ing to be localized at sites of neutral buoyancy (Cloos, 2001;
Richards, 2005), are the sources of both magmas and high-
temperature, high-pressure metalliferous fluids throughout
system development. 

Field observations and theoretical calculations suggest that
parental chambers with volumes on the order of 50 km3 may
be capable of liberating enough fluid to form porphyry Cu de-
posits, but chambers at least an order of magnitude larger are
needed to produce giant systems, particularly where deposit
clusters or alignments exist (Dilles, 1987; Cline and Bodnar,
1991; Shinohara and Hedenquist, 1997; Cloos, 2001; Cathles
and Shannon, 2007). The metal-charged aqueous phase is re-
leased from the cooling and fractionating parental chambers
during open-system magma convection as well as later stag-
nant magma crystallization (Shinohara and Hedenquist,
1997). Convection provides an efficient mechanism for deliv-
ery of copious amounts of the aqueous phase, in the form of
bubble-rich magma, from throughout the parental chambers
to the basal parts of porphyry stocks or dike swarms (Candela,
1991; Shinohara et al., 1995; Cloos, 2001; Richards, 2005). In
most systems, any volcanism ceases before porphyry Cu sys-
tem formation is initiated, although relatively minor eruptive
activity, such as dome emplacement, may be either inter-
spersed with or perhaps even accompany ascent of the mag-
matic aqueous phase (e.g., Bingham and Yanacocha; Deino
and Keith, 1997; Longo and Teal, 2005). 

The shallow-level porphyry stocks do not themselves gen-
erate the bulk of the magmatic fluid volume, but simply act
as “exhaust valves,” conduits for its upward transmission
from the parental chambers, perhaps via cupolas on their
roofs (Fig. 4). This scenario implies episodic but focused
magma and fluid ascent for as long as ~5 m.y. in the case of
long-lived porphyry Cu systems, whereas elsewhere the loci
of intrusive and hydrothermal activity migrate, either sys-
tematically or randomly, to give rise to the porphyry Cu and
epithermal Au deposit clusters and alignments discussed
above. 

The parental magmas need to be water rich (>~4 wt %) and
oxidized in order to maximize the metal contents of the re-
sultant aqueous phase (Burnham and Ohmoto, 1980; Candela
and Holland, 1986; Dilles, 1987; Cline and Bodnar, 1991;
Candela, 1992; Candela and Piccoli, 2005; Richards, 2005).
High water contents result in magmas becoming saturated
with the aqueous phase, into which the ore metals can parti-
tion efficiently; and high oxidation state suppresses magmatic
sulfide, such as pyrrhotite, precipitation, a process that may
cause sequestration of metals before they can partition into
the aqueous phase. Nevertheless, resorption of any sulfide
melt during ascent of oxidized magmatic fluids could make a
major contribution to metal budgets (Keith et al., 1997; Hal-
ter et al., 2005). The magmas are also exceptionally S rich, as
emphasized by recognition of anhydrite as a magmatic min-
eral in some porphyry stocks (Lickfold et al., 2003; Audétat et
al., 2004; Stern et al., 2007; Chambefort et al., 2008). Addi-
tion of mafic melt to the parental chambers could be an ef-
fective means of augmenting S and metal budgets (Keith et
al., 1997; Hattori and Keith, 2001; Maughan et al., 2002; Hal-
ter et al., 2005; Zajacz and Halter, 2009). 

Early porphyry Cu system evolution

Porphyry Cu mineralization in the deeply formed (up to 9
km) potassic alteration zones at Butte and elsewhere took
place directly from a single-phase, relatively low salinity
(2−10 wt % NaCl equiv), aqueous liquid (Rusk et al., 2004,
2008a); such a phase may contain several thousand ppm to
several percent of base metals and several ppm Au, based on
thermodynamic (Heinrich, 2005) and analytical (Audétat et
al., 2008) observations. However, at the shallower depths typ-
ical of most deposits (<~4 km), the mineralization is intro-
duced by a two-phase fluid, comprising a small fraction of
 hypersaline liquid (brine) and a much larger volume of low-
density vapor (Fournier, 1999), produced by either direct ex-
solution from the melt (Shinohara, 1994) or, more typically, as
the single-phase liquid decompresses, cools, and intersects its
solvus (e.g., Henley and McNabb, 1978; Burnham, 1979;
Cline and Bodnar, 1991; Webster, 1992; Bodnar, 1995; Cline,
1995). Coexistence of immiscible hypersaline liquid and
vapor has been ubiquitously demonstrated in numerous fluid
inclusion studies (Roedder, 1984), which also show that the
liquid phase is enriched in Na, K, and Fe chlorides, giving rise
to salinities of 35 to 70 wt percent NaCl equiv (e.g., Roedder,
1971; Nash, 1976; Eastoe, 1978; Bodnar, 1995), whereas the
vapor phase contains acidic volatile species, preeminently
SO2, H2S, CO2, HCl, and any HF (e.g., Giggenbach, 1992,
1997). Fluid inclusion microanalysis and experimental studies
reveal that, during phase separation, specific element suites
selectively fractionate between the vapor and hypersaline liq-
uid. In many cases, vapor can contain an appreciable amount
of the Cu, Au, Ag, and S, plus much of the As, Sb, Te, and B,
whereas Fe, Zn, Pb, Mn, and possibly Mo preferentially par-
tition into the hypersaline liquid (Heinrich et al., 1999; Hein-
rich, 2005; Pokrovski et al., 2005, 2008, 2009; Williams-Jones
and Heinrich, 2005; Simon et al., 2007; Audétat et al., 2008;
Nagaseki and Hayashi, 2008; Wilkinson et al., 2008; Pudack et
al., 2009; Seo et al., 2009). 

Transport of Cu and probably also Au was for decades tac-
itly assumed to be in the form of chloride complexes in the
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hypersaline liquid phase (e.g., Holland, 1972; Burnham,
1967, 1997; Burnham and Ohmoto, 1980; Candela and Hol-
land, 1986), but recent experimental work and fluid inclusion
S analysis show that volatile S ligands (H2S ± SO2) in the
vapor phase can also act as major Cu- and Au-transporting
agents (Nagaseki and Hayashi, 2008; Pokrovski et al., 2008,
2009; Seo et al., 2009; Zajacz and Halter, 2009). In contrast,
Mo may be transported as different, possibly oxochloride
complexes in the hypersaline liquid phase (Ulrich and Mavro-
genes, 2008).

Current orthodoxy maintains that the early sodic-calcic al-
teration observed in some porphyry Cu deposits is a product
of inflowing brine sourced from host-rock sequences (Carten,
1986; Dilles and Einaudi, 1992; Dilles et al., 1995; Seedorff et
al., 2005, 2008), in keeping with theoretical predictions for
fluids following heating paths under silicate-rock−buffered
conditions (e.g., Giggenbach, 1984, 1997). Light stable iso-
tope studies of sodic-calcic alteration in the Yerington district
support the involvement of externally derived brine from the
host sedimentary sequence (Dilles et al., 1992, 1995), al-
though the albite-actinolite alteration there is magnetite de-
structive (Carten, 1986; Dilles et al., 1995). In other cases,
however, there is evidence for an origin from hypersaline
magmatic liquids, with the paucity of contained sulfide min-
eralization being due to excessively high temperatures and
oxygen fugacities and the consequent deficiency of reduced S
(John, 1989; Clark and Arancibia, 1995; Lang et al., 1995). A
magmatic source would certainly be favored where sodic-cal-
cic zones are metal bearing (see above). 

As porphyry Cu systems cool through the 700° to 550°C
temperature range, the single-phase liquid or, more com-
monly, coexisting hypersaline liquid and vapor initiate potas-
sic alteration and perhaps the first metal precipitation in and
around the early porphyry intrusions (e.g., Eastoe, 1978; Bod-
nar, 1995; Frei, 1995; Ulrich et al., 2001). Nevertheless, in
many porphyry Cu deposits, it is fluid cooling over the ~550º
to 350°C range, assisted by fluid-rock interaction, that is
largely responsible for precipitation of the Cu, in low sulfida-
tion-state Cu-Fe sulfide assemblages, plus any Au (e.g., Ul-
rich et al., 2001; Redmond et al., 2004; Landtwing et al.,
2005; Klemm et al., 2007; Rusk et al., 2008a). In addition, up-
ward decompression and expansion of the vapor phase causes
rapidly decreasing solubility of the vapor-transported metals
(Williams-Jones et al., 2002), as confirmed by their very low
contents in high-temperature but atmospheric-pressure fu-
maroles (Hedenquist, 1995). Such a decrease in solubility
leads to wholesale precipitation of the Cu-Fe sulfides to-
gether with Au, thereby potentially accounting for the typi-
cally shallow formation (Cox and Singer, 1992; Sillitoe, 2000)
of Au-rich porphyry Cu deposits (Williams-Jones and Hein-
rich, 2005). The different Mo complexing (see above), proba-
bly assisted by progressive increase of the Mo/Cu ratio in the
residual parental melt as crystallization proceeds (Candela
and Holland, 1986), results in much of the molybdenite being
precipitated not only later than but also spatially separate
from the bulk of the Cu ± Au (see above). 

Potassic alteration and associated metal deposition are ini-
tiated under near-lithostatic conditions and involve extensive
hydraulic fracturing of the ductile rock at high strain rates
(Fournier, 1999) to generate the pervasive stockwork veining

(Burnham, 1979): a process that may give rise to large in-
creases in rock volume (Cathles and Shannon, 2007). The sin-
gle-phase liquid, the mineralizer in deeply formed porphyry
Cu deposits, may generate the relatively uncommon EDM
halo veinlets (Rusk et al., 2008a; Proffett, 2009), whereas the
two-phase fluid produces the more common A- and B-type
quartz veinlets (e.g., Roedder, 1984, and references therein).
The local occurrence of vein dikes (see above), as well as
recognition of coexisting melt and aqueous fluid inclusions in
early quartz veinlets (Harris et al., 2003), confirms that
magma and mineralizing fluid commonly coexist, although
markedly different densities dictate that they typically sepa-
rate. The stockwork veinlets control and focus continued fluid
ascent, with partial dissolution of quartz during cooling
through its retrograde solubility field (<~550-400°C at pres-
sures <~900 b; Fournier, 1999) enhancing the permeability of
the A-type quartz veinlets during at least some of the Cu-Fe
sulfide precipitation (Rusk and Reed, 2002; Redmond et al.,
2004; Landtwing et al., 2005); synmineral faulting and frac-
turing may play a similar role. The quartz-veined cores of
potassic zones remain barren where temperatures are too
high to permit appreciable Cu-Fe sulfide and associated Au
deposition, potentially giving rise to the bell- and cap-shaped
ore zones described above (e.g., Bingham, Resolution, and
Batu Hijau; Babcock et al., 1995; Ballantyne et al., 2003;
Setyandhaka et al., 2008). Fluid pressures may fluctuate from
lithostatic to hydrostatic during porphyry Cu formation (e.g.,
Ulrich et al., 2001), as a result of both repetitive fracture
propagation and sealing and reductions in confining pressure
consequent upon surface degradation (see below). These
pressure variations may induce changes in the fluid phases
present and consequent remobilization as well as precipita-
tion of metals (e.g., Klemm et al., 2007; Rusk et al., 2008a).
Magmatic-hydrothermal brecciation may be triggered by sud-
den release of fluid overpressures caused by roof failure
above large, expanding vapor bubbles (Norton and Cathles,
1973; Burnham, 1985), particularly near the ductile-brittle
transition (Fournier, 1999).

During the protracted potassic alteration event(s) that af-
fect the early and intermineral porphyries and their immedi-
ate wall rocks, heated external water, largely meteoric but
possibly containing a connate component (e.g., Bingham;
Bowman et al., 1987), generates the peripheral propylitic al-
teration, mainly by moderate-temperature hydration reac-
tions (Meyer and Hemley, 1967). Convective circulation of
the external water takes place where rock permeabilities are
adequate (Fig. 14): a process that acts as a potent cooling
mechanism for porphyry Cu systems (Cathles, 1977), particu-
larly after parental intrusions have crystallized and no longer
exsolve magmatic fluid.

The voluminous vapor readily separates from the coexist-
ing hypersaline liquid and, because of its lower density, as-
cends buoyantly into the 1- to 2-km-thick rock column above
the porphyry intrusions (e.g., Henley and McNabb, 1978;
Hedenquist et al., 1998; Fig. 14). Progressive disproportiona-
tion of the contained SO2 (to H2SO4 and H2S) once it and HCl
(plus any HF) condense into ground water (Giggenbach,
1992; Rye, 1993) generates the extremely low pH fluid re-
sponsible for the high degrees of base leaching involved in ad-
vanced argillic lithocap formation (e.g., Meyer and Hemley,
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1967). Focused ascent of the reactive fluid through fault and
other permeable conduits leads to generation of the vuggy,
residual quartz cores (if pH is <2; Stoffregen, 1987), flanked
by zoned advanced argillic halos (Table 2; see above) indica-
tive of partial outward fluid penetration, neutralization, and
cooling. However, because of the low pressure of the lithocap
environment and, hence, low metal-transporting capability of
the absorbed vapor (see above), the resultant acidic fluid is

unlikely to produce much mineralization, thereby possibly ac-
counting for the barren status of many lithocaps (e.g., Heden-
quist et al., 1998, 2000; Heinrich et al., 2004; Heinrich, 2005). 

Late porphyry Cu system evolution 

As the underlying parental magma chambers progressively
solidify and magma convection ceases, there are marked re-
ductions in both the heat flux and aqueous fluid supply to the
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FIG. 14.  Schematic time slices through the telescoped porphyry Cu system illustrated in Figures 6 and 10 to show the
evolution of the main magmatic fluid and alteration-mineralization types in concert with progressive downward magma so-
lidification, cooling, and paleosurface degradation. At the early stage (left side), magma is present at the top of the parental
chamber, a single-phase, low- to moderate-salinity liquid exits the magma and undergoes phase separation during ascent to
generate immiscible hypersaline liquid and vapor, which generate potassic alteration plus contained low sulfidation-state por-
phyry Cu ± Au mineralization. The upward-escaping, low-pressure vapor that does not attain the paleosurface as high-tem-
perature fumaroles (e.g., Hedenquist, 1995; Hedenquist et al., 1993) forms acidic condensate to produce generally barren
advanced argillic alteration. As magma solidification advances downward (middle), the entire system progressively cools, and
the rock can fracture in a brittle fashion on cooling below ~400ºC (Fournier, 1999); at this stage, lithostatic gives way to hy-
drostatic pressure, and erosion (or some other mechanism) progressively degrades the paleosurface. Under these lower tem-
perature conditions, sericitic ± chlorite-sericite alteration zones begin to form from a deeply derived, single-phase aqueous
liquid generated by one or both of the methods (see text) postulated by Hedenquist et al. (1998) and Heinrich et al. (2004).
Eventually (right side), the sericitic ± chlorite-sericite alteration may cause variable degrees of Cu ± Au removal, but hypo-
gene Cu enrichment is also possible in the former. The same liquid continues upward into the lithocap where, upon cooling
in an unbuffered environment, it evolves into a high sulfidation-state liquid; if properly focused, it may generate high-sulfi-
dation (HS) epithermal deposits. Renewed neutralization of this same liquid on exiting the lithocap and/or aliquots of the
deep liquid that bypass the lithocap entirely may give rise to peripheral intermediate-sulfidation (IS) epithermal mineraliza-
tion. Based on modeling by Hedenquist et al. (1998), Sillitoe and Hedenquist (2003), and Heinrich (2005). 



overlying porphyry Cu systems (Dilles, 1987; Shinohara and
Hedenquist, 1997), effects that are accompanied by down-
ward propagation of the lithostatic-hydrostatic transition
(Fournier, 1999). Under these lower temperature conditions,
the aqueous liquid phase exsolves more slowly from the still
crystallizing magma and, in turn, advects more slowly and
cools, such that it may not intersect its solvus. If this scenario
is correct, a single-phase, low- to moderate-salinity (5−20 wt
% NaCl equiv) liquid in the 350° to 250°C temperature range
ascends directly from the parental chambers into overlying
porphyry Cu systems (Shinohara and Hedenquist, 1997;
Hedenquist et al. 1998; Fig. 14). Alternatively, a single-phase
liquid may form, possibly after separation of some brine, by
subsequent contraction of vapor of the same composition as it
cools at elevated pressures above the critical curve of the fluid
system (Heinrich et al., 2004; Heinrich, 2005). The low-salin-
ity liquid, whose ascent is controlled by the preexisting quartz
veinlet stockworks, synmineral faults, and permeability con-
trasts provided by steep intrusive contacts, appears to be re-
sponsible for the progressive formation of the chlorite-sericite
and sericitic alteration, as well as continued advanced argillic
alteration and the principal Cu and Au mineralization in the
overlying lithocaps (Hedenquist et al., 1998; Heinrich et al.,
2004; Rusk et al., 2008b). 

Admixture of magmatic and meteoric fluids, with the latter
dominant, was long considered necessary to produce sericitic
alteration and the attendant low- to moderate-salinity liquid,
i.e., 5 to 10× dilution of the hypersaline liquid (e.g., Shep-
pard et al., 1971; Taylor, 1974), but recent interpretations of
stable O and H isotope data reveal that an exclusively mag-
matic fluid is quite capable of producing the chlorite-sericite
and sericitic assemblages (Kusakabe et al., 1990; Hedenquist
and Richards, 1998; Hedenquist et al., 1998; Watanabe and
Hedenquist, 2001; Harris and Golding, 2002; Skewes et al.,
2003; Rusk et al., 2004; Khashgerel et al., 2006). However,
meteoric water involvement in late sericitic alteration is by no
means precluded (e.g., Hedenquist et al., 1998; Harris et al.,
2005), particularly on the margins of systems where the ad-
vecting magmatic liquid may entrain convecting meteoric
water, although its formerly preeminent role in the porphyry
Cu genetic model (e.g., Beane and Titley, 1981; Hunt, 1991)
is now greatly diminished. Since chlorite-sericite alteration
partially or totally reconstitutes potassic assemblages, and
sericitic alteration does the same to potassic and/or chlorite-
sericite assemblages, it is generally impossible to determine if
the contained metals are inherited from the former sulfide
 assemblage(s) (e.g., Brimhall, 1979) or newly introduced in
the ascendant, still magmatic-sourced aqueous liquid. How-
ever, apparent confinement of hypogene Cu enrichment (see
above) to sericitic alteration overprinting rocks cut by quartz
veinlet stockworks that formerly contained chalcopyrite ±
bornite may suggest that a large component of the Cu in the
newly generated high sulfidation-state assemblages is derived
by relatively localized remobilization (Sillitoe, 1999b).

The base and precious metal deposit types in both carbon-
ate and noncarbonate wall-rock lithologic units likely form
from the same aqueous magmatic fluids that are involved in
porphyry Cu alteration and mineralization, wherever there is
provision of lateral fluid access from the porphyry stock or
dikes via lithologic, structural, and/or hydrothermally induced

permeability (Fig. 14). In the skarn environment, the early
two-phase hypersaline liquid plus vapor is likely to be fol-
lowed under declining temperature conditions by the single-
phase liquid (e.g., Meinert et al., 1997, 2003; Fig. 14), from
which the retrograde skarn Cu ± Au ± Zn, carbonate-re-
placement Cu or Zn-Pb-Ag-(Au), and sediment-hosted Au-
(As-Sb) deposits are formed (e.g., Meinert et al., 1997, 2003;
Heinrich, 2005).

High Zn, Pb, Ag, and Mn contents are recorded in hyper-
saline liquid inclusions from quartz veinlets formed during
potassic alteration (Bodnar, 1995; Heinrich et al., 1999; Ul-
rich et al., 1999; Wilkinson et al., 2008), but these chloride-
complexed metals (see above) remain in solution because
they are not appreciably concentrated in the sulfides present
in the main porphyry Cu orebodies. Cooling of the hyper-
saline liquid in contact with external wall rocks and dilution
with meteoric water in the propylitic halos may be the main
causes of Zn, Pb, Ag, and Mn precipitation (Hemley and
Hunt, 1992), giving rise to the geochemical halos of these
metals and, in some systems, localized vein concentrations
(Jerome, 1966; Figs. 6, 10). The largest concentrations of pe-
ripheral Zn, Pb, and Ag are confined to systems hosted by re-
ceptive carbonate rocks, where fluid neutralization induces
the precipitation of these metals in skarn and carbonate-re-
placement deposits (Seward and Barnes, 1997).

The fluid most likely to lead to appreciable high-sulfidation
Au ± Ag ± Cu mineralization in the relatively barren, early-
formed lithocaps is the low- to moderate-salinity, H2S-rich,
aqueous liquid that produces the underlying sericitic zones
(Hedenquist et al., 1998; Heinrich et al., 2004; Heinrich,
2005; Pudack et al., 2009; Fig. 14). On entering the lithocap
environment, this intermediate sulfidation-state liquid (form-
ing chalcopyrite and tennantite at depth) becomes unbuffered
and easily evolves to a higher sulfidation state on cooling
(Einaudi et al., 2003; Sillitoe and Hedenquist, 2003). The
Cordilleran massive sulfide lodes are localized where the liq-
uid follows pronounced structural permeability spanning the
sericitic to advanced argillic transition (Figs. 6, 10) or, less
commonly, encounters reactive carbonate rocks (e.g., Baum-
gartner et al., 2008; Bendezú and Fontboté, 2009). However,
much of the Au precipitates in the shallower parts of lithocaps
because of the greater likelihood of sharp drops in Au solu-
bility caused by either intense boiling in upflow conduits or
admixture of the ascendant liquid with cool, inflowing ground
water; in some cases, the latter appears to originate from the
vadose zone (see below) where it was steam heated (Heden-
quist et al., 1998; Heinrich, 2005, and references therein;
Figs. 6, 14). These shallow Au precipitation processes may be
particularly effective in permeable phreatic breccias created
by boiling of the ascendant liquid, vapor buildup beneath sili-
cified seals, and eventual catastrophic release, perhaps as-
sisted by external triggers (faulting, seismic shaking, and/or
deep intrusion contributing gases; e.g., Nairn et al., 2005). 

The low- to moderate-salinity liquids responsible for high-
sulfidation deposits in lithocaps may, under appropriate struc-
tural and hydrologic conditions, pass into adjoining, less-
 altered rocks and undergo sufficient neutralization and
reduction during outward flow and wall-rock reaction to pro-
duce liquids appropriate for formation of intermediate-sulfi-
dation epithermal deposits (Sillitoe, 1999b; Einaudi et al.,
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2003; Sillitoe and Hedenquist, 2003; Fig. 14). The above-
cited examples of mineralogic transitions between high- and
intermediate-sulfidation mineralization provide support for
this mechanism. Alternatively, the deeply derived intermedi-
ate sulfidation-state liquids may bypass the lithocaps entirely
and still produce intermediate-sulfidation mineralization at
shallow epithermal levels (Sillitoe and Hedenquist, 2003, Fig.
14). 

At paleowater tables, near the tops of the lithocaps and
nearby areas, the liquid portion of the boiling high- and in-
termediate-sulfidation fluids follows hydrologic gradients,
whereas the H2S-bearing vapor (with H2S contributed by the
magma as well as SO2 disproportionation) continues its ascent
into the overlying vadose zones. There, it condenses into
ground water to oxidize and produce the low-temperature,
acidic fluid responsible for the blanketlike, advanced argillic
alteration zones characteristic of the steam-heated environ-
ment (Sillitoe, 1993, 1999b; Fig. 10).

As the thermal regimes of porphyry Cu systems decay, shal-
lowly generated alteration-mineralization types become tele-
scoped over more deeply formed ones (e.g., Gustafson, 1978;
Fournier, 1999; Heinrich et al., 2004; Williams-Jones and
Heinrich, 2005; Rusk et al., 2008a), thereby causing the se-
quence of metal remobilization and reprecipitation events
emphasized above. Indeed, the tops of porphyry intrusions
may be subjected to at least four distinct alteration-mineral-
ization events, commencing with potassic and ending with ad-
vanced argillic, as temperature fronts retreat downward (Fig.
14). The resultant telescoping is potentially more extreme,
giving rise to deep penetration of advanced argillic alteration
into porphyry stocks, where porphyry Cu systems undergo ei-
ther rapid, synhydrothermal erosion under high uplift, pluvial
or glacial conditions (Fig. 14) or, perhaps less commonly,
gravity-induced sector collapse of any overlying volcanic edi-
fices (Sillitoe, 1994; Perelló et al., 1998; Landtwing et al.,
2002; Carman, 2003; Heinrich, 2005; Masterman et al., 2005;
Rohrlach and Loucks, 2005; Pudack et al., 2009). 

By the time that the late-mineral porphyry phases are
added to porphyry Cu stocks or dike swarms, fluid ascent
from the parental magma chambers has all but ceased, and K
and metal availability is too limited to generate appreciable
potassic alteration and mineralization. The only fluid present
is of external origin and produces propylitic alteration similar
to that in the earlier formed propylitic halos. Diatreme brec-
cias are preferentially emplaced at this time because external
water access to late-mineral magma bodies, a requirement for
phreatomagmatic activity, is facilitated. End-stage, ground-
water incursion into the hot porphyry Cu deposits leads to an-
hydrite veinlet formation, in conformity with the mineral’s
retrograde solubility (e.g., Rimstidt, 1997).

Exploration Implications

Target selection

When planning exploration programs for porphyry Cu ±
Mo ± Au, skarn Cu ± Au, or high-sulfidation epithermal Au
deposits, the preeminent ore types hosted by porphyry Cu
systems, the choice is between selection of (1) mature, well-
endowed Cu or Au belts, (2) emerging belts with less obvious
metallogenic credentials but having at least one important

 deposit of the type that is sought, or (3) frontier terranes with
geologic conditions that are perceived to imply potential. On
the basis of recent exploration successes, the first choice has
been shown to be a wise one, as witnessed by the strings of
high-sulfidation Au and Au-rich porphyry discoveries that
now define the El Indio-Maricunga belt in northern Chile
and Cajamarca-Huaraz belt in northern Peru (Sillitoe, 2008),
as well as discovery of the Resolution porphyry Cu-Mo de-
posit in the southwestern North American Cu province after
a 100-year exploration history (Manske and Paul, 2002). To
date, the second choice could be taken to have been less suc-
cessful, as shown by the lack of economically significant dis-
coveries in the vicinities of the major but isolated Bingham,
Butte, Pebble, and Oyu Tolgoi districts, although greenfield
exploration is in its infancy in the still poorly defined mag-
matic arcs that host the last two of these. However, the El
Indio and Yanacocha high-sulfidation Au deposits were ini-
tially the isolated orebodies that led to eventual definition of
the El Indio-Maricunga and Cajamarca-Huaraz belts, respec-
tively. The third choice, frontier terranes, obviously involves
higher risk but resulted in the recent discoveries of Pebble,
Oyu Tolgoi, and Reko Diq, for example (Bouley et al., 1995;
Perelló et al., 2001, 2008; Kirwin et al., 2003). 

The empirical relationship between well-established mag-
matic (including postcollisional) arcs containing major, high-
grade hypogene porphyry Cu and high-sulfidation Au de-
posits and contractional tectonic settings characterized by
high surface uplift and denudation rates (see above) may
prove to be a useful criterion for selection of underexplored
arc segments with incompletely tested potential. Contrac-
tional settings are strongly suggested where entire arc seg-
ments possess only minor volcanic rock volumes contempora-
neous with the development of porphyry Cu systems,
particularly where lithocaps are widely preserved as evidence
for shallow erosion. Contractional settings are also likely in
belts or districts where porphyry Cu stocks or dike swarms are
overprinted on precursor plutons or, in island-arc settings,
where marine sedimentary rocks only slightly older than the
porphyry Cu systems have been uplifted to ~1 km or more
above sea level (Sillitoe, 1998). In arcs where volcanic rocks
are abundant, large-volume ignimbrites, indicative of caldera
formation, are taken to seriously downgrade porphyry Cu and
related epithermal Au potential for the reason given above.

The clustering or alignment of both porphyry Cu and
high-sulfidation Au deposits has been shown time and again
to be a highly effective exploration concept. The recent major
porphyry Cu-Mo ± Au discoveries in the productive Col-
lahuasi (Rosario Oeste), Chuquicamata (Toki cluster; Rivera
and Pardo, 2004; Fig. 3b), Escondida (Pampa Escondida),
and Los Bronces-Río Blanco (Los Sulfatos; Fig. 5a) districts
of Chile are all within <1 to 3 km of the previously known de-
posits, as are the several porphyry Cu-Au discoveries in the
Cadia district (Holliday et al., 1999) and high-sulfidation Au
discoveries in the Yanacocha district (Harvey et al., 1999) that
were made since mining commenced. In any deposit cluster
or alignment, the best deposit may be found first or only after
several lesser discoveries have already been made (e.g., Hugo
Dummett; Kirwin et al., 2003). Whether or not these and
other deposit clusters and alignments owe their existence to
fundamental faults or lineaments (see above; Richards, 2000),
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it is often not obvious if exploration—commonly focused on
areas of pre- or postmineral cover—should target broadly
equidimensional deposit arrays or arc-parallel or arc-trans-
verse alignments, particularly when only one or two deposits
have been defined. However, local structural observations,
perhaps interpreted from geophysical responses, may assist
in this regard, although this approach played no part in the
recent discoveries noted above in the Chilean porphyry Cu
districts.

Even cursory inspection of Figure 6 shows clearly that ero-
sion level is a fundamental control on the mineralization types
that may be anticipated to occur in porphyry Cu systems. If
porphyry Cu deposits concealed beneath advanced argillic al-
teration are the principal target, then deeply eroded lithocaps
in which quartz-pyrophyllite ± muscovite ± andalusite alter-
ation is prominent are best selected (e.g., El Salvador). Any
exposed A-type quartz veinlet stockworks overprinted by
sericitic and/or advanced argillic assemblages immediately
pinpoint the spots for initial scout drilling (Sillitoe, 1995a). In
contrast, D-type veinlets may be up to 1 km laterally away
from the target. Nevertheless, bearing in mind that most ob-
served lithocaps are only erosional remnants, exploration
should focus first around their peripheries in case a porphyry
Cu deposit has already been exposed. However, should the
search be for high-sulfidation Au deposits, the shallow parts
of lithocaps may have the best potential for the discovery of
large, albeit commonly low-grade orebodies. The existence of
even minor erosional remnants of steam-heated horizons and
their chalcedonic bases, generated above and at paleowater
tables, respectively, guarantees that the appropriate near-sur-
face level is preserved (Sillitoe, 1999b). 

Assessment of the likely host-rock lithologic units is also im-
portant during initial appraisals of porphyry Cu belts and dis-
tricts. Obviously, major skarn, carbonate-replacement, and
sediment-hosted Au deposits can only be expected where rel-
atively thinly bedded, commonly silty carbonate rocks are
present. Large, high-grade porphyry Cu deposits seem to be
favored by the “pressure-cooker effect” provided by imper-
meable wall rocks, including massive, thickly bedded carbon-
ate sequences (e.g., Grasberg), a situation that can also lead
to the formation of blind high-grade deposits overlain by largely
unaltered rocks (e.g., Hugo Dummett, Ridgeway, Pueblo
Viejo). Exceptionally ferrous Fe-rich rocks, relatively uncom-
mon in most arc terranes, also appear to assist with develop-
ment of high hypogene Cu grades as well as maximizing the
wall rock-hosted component of the deposit (e.g., El Teniente,
Resolution, Oyu Tolgoi). Highly permeable, noncarbonate
host rocks may promote lateral fluid channeling, which may
lead to generation of distal ore types other than structurally
controlled veins (e.g., Andacollo). Porous and permeable vol-
caniclastic and epiclastic sequences also favor large-tonnage
orebody development in the lithocap environment, especially
where they happen to be shallowly located with respect to
 paleosurfaces.

The large size of some porphyry Cu systems, with maxi-
mum radii of ~8 km (e.g., Fig. 9) and maximum areal extents
approaching 100 km2 (Singer et al., 2008), complicates their
effective exploration because attention is unavoidably focused
on the more prominently altered parts, such as pyrite-bearing
porphyry Cu mineralization, pyrite halos, and pyrite-rich

lithocaps. As a consequence, the most distal and subtle ore
types, sediment-hosted Au on the fringes of carbonate rock-
hosted districts and Zn-Pb-Ag ± Au−bearing intermediate-
sulfidation epithermal veins and carbonate-replacement bod-
ies on the fringes of lithocaps attract less attention and may be
easily missed. 

It also needs to be emphasized that few porphyry Cu sys-
tems, whatever their exposure level, contain the full spectrum
of potential ore types depicted in Figure 6, although the
Bingham district with its porphyry Cu-Au-Mo, Cu-Au skarn,
carbonate-replacement Zn-Pb-Ag-Au, and sediment-hosted
Au deposits (Babcock et al., 1995) and the more shallowly ex-
posed Lepanto district with its porphyry Cu-Au, high-sulfida-
tion Cu-Au-Ag, and intermediate-sulfidation Au-Ag-Cu de-
posits (Hedenquist et al., 2001) are exceptionally well endowed
in this regard. Nevertheless, many systems contain only one or
two deposit types rather than a full zonal array (Table 3), with
the presence of the more distal ore types at either porphyry Cu
or lithocap levels being independent of the size and grade of
the porphyry Cu deposits or prospects. Therefore, recognition
of even weakly developed mineralization of a single type may
help to direct exploration for potentially higher grade mineral-
ization of other types elsewhere in the system. Furthermore,
Mo- as well as Au-rich porphyry Cu deposits may be associated
with Au-endowed lithocaps (e.g., Nevados del Famatina dis-
trict; Lozada-Calderón and McPhail, 1996), although lithocaps
above any porphyry Cu deposit may lack appreciable high-sul-
fidation mineralization (e.g., Red Mountain; Corn, 1975; Quin-
lan, 1981), at least in their preserved parts. 

Target appraisal

Notwithstanding the typical occurrence model depicted in
Figure 6 and taking into account the critical importance of
erosion level, the innumerable variations on the porphyry Cu
genetic theme result in a broad spectrum of three-dimen-
sional intrusion, breccia, alteration, and mineralization
geometries (e.g., Gustafson and Hunt, 1975). At first glance,
using representative cross sections of alteration at four high-
grade hypogene porphyry Cu deposits as examples (Fig. 15),
these varied geometries are not easy to relate to a standard
geologic model. Each individual deposit or prospect must be
carefully constructed using surface mapping and core log-
ging, with particular attention paid to the temporal as well as
spatial relationships of its constituent parts. Only then will the
positive and negative geologic features and, hence, its overall
potential become evident.

In most magmatic arc terranes, it is roughly estimated that
>90 percent of explored porphyry systems lack Cu and Au
concentrations with foreseeable potential, commonly because
the ore-forming processes, from magma generation through
to alteration and mineralization, were less than fully opti-
mized (e.g., Richards, 2005). Some critical step in the genetic
sequence was either poorly developed or entirely missing.
For example, porphyry Cu prospects containing only weakly
developed potassic alteration and A-type quartz veinlets in
their central parts, indicating a deficiency of early-stage mag-
matic fluids, are typically subore grade. Similarly, proximal
skarns lacking hydrous, retrograde overprints are unlikely to
host significant Cu-Au deposits. Lithocaps dominated by
quartz-alunite or quartz-pyrophyllite alteration but without
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appreciable development of vuggy, residual quartz and asso-
ciated silicification, perhaps because fluid pH was too high or
exposure level is too deep, are much less likely to contain
major high-sulfidation Au deposits, although Pueblo Viejo
provides a salutary exception (Kesler et al., 1981; Sillitoe et
al., 2006).

Commonly, the highest grade and most coherent porphyry
Cu deposits are those that retain their early porphyry phases
and potassic alteration assemblages—with which much of the
metal content is initially introduced—in essentially unmodi-
fied form. This is particularly the case for Au, which tends to

be removed and dissipated during the formation of lower tem-
perature, pyrite-bearing alteration assemblages (Gammons
and Williams-Jones, 1997; Sillitoe, 2000; Kesler et al., 2002).
Thermal regimes that permit vertically extensive ore zone de-
velopment in potassic zones commonly have greater size po-
tential than those that were excessively hot internally, thereby
inhibiting sulfide precipitation and giving rise to large, low-
grade or barren cores; the exception is where the resultant
shell-like orebodies are areally extensive and thick (e.g., Bing-
ham and Resolution; Babcock et al., 1995; Ballantyne et al.,
2003). The enhanced Cu ± Au tenors of many bornite-rich
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TABLE 3.  Representative Examples of Various Mineralization-Type Combinations in Porphyry Cu Systems1

District, Porphyry Proximal Distal Carbonate- Sediment- Peripheral High- Intermediate-
location deposit skarn skarn replacement Hosted veins/mantos sulfidation sulfidation Reference(s)

Bingham, Bingham Carr Fork and Zn-Pb-Ag- Barneys Babcock et al. 
Utah Cu-Au-Mo North Shoot (Au) bodies Canyon and (1995), Cunning-

Cu-Au Melco Au ham et al. (2004)

Copper Copper East and West Lower Zn-Pb Theodore et al. 
Canyon, Canyon stock Zone Cu-Au2 Fortitude occurrences (1982), Wotruba 
Nevada Cu-Mo-Au2 Au3 et al. (1988), Cary

et al. (2000)

Superior, Resolution Superior Paul and Knight 
Arizona Cu-Mo Cu-Ag (1995), Manske 

and Paul (2002)

Yanacocha, Kupfertal Yanacocha Au Harvey et al. 
Peru Cu-Au Norte Au occurrences (1999)

Antamina, Cu-Mo Antamina Cu- Zn-Pb-Ag Love et al. (2004),
Peru occurrence Zn-Mo-Ag-Au veins Redwood (2004)

Potrerillos, Mina Vieja San Antonio Cu Jerónimo Silica Roja El Hueso Thompson et al. 
Chile Cu-Mo-Au Au Au Au (2004)

Andacollo, Carmen de Andacollo Reyes (1991)
Chile Andacollo Oro Au

Cu-Mo-Au

Lepanto, Far Southeast Lepanto Victoria Hedenquist et al. 
Philippines Cu-Au Cu-Au-Ag and Teresa (2001)

Au-Ag-Cu

Wafi-Golpu, Wafi Cu-Au A and Link Link Zone Ryan and Vigar 
Papua New Zone Au Au (1999)
Guinea

Sepon, Padan and Cu-Au Khanong and Discovery, R.H. Sillitoe 
Laos Thengkham occurrences Thengkham Nalou, etc. (unpub. repts., 

Mo-Cu South Cu-Au Au 1994–1999), 
occurrences Smith et al. (2005)

Bau, Cu-Au Cu-Au Zn-Pb Bau Au Percival et al. 
Malaysia occurrences occurrences occurrences (1990), Sillitoe 

and Bonham 
(1990)

Recsk, Recsk Deeps Recsk Deeps Recsk Recsk Lahóca Parád Kisvarsanyi 
Hungary Cu-Au-Mo Cu-Au Deeps Deeps Cu-Au Au-Ag (1988), Földessy 

Zn-Cu Zn-Pb and Szebényi 
(2008)

1 Minor occurrences italicized
2 Porphyry Cu formation likely inhibited by reduced nature of the host porphyry (Meinert, 2000)
3 Proximal to distal skarn transition spanned by Phoenix and Greater Midas pits (Cary et al., 2000)
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porphyry Cu deposits provide the justification for deeper drill
testing of both bornite-bearing and bornite-free potassic al-
teration zones that are judged to have been only relatively
shallowly explored (e.g., Esperanza; Perelló et al., 2004b).
Abundant hydrothermal magnetite is a good indicator of po-
tentially Au-rich porphyry Cu deposits (Sillitoe, 1979), and
the presence of banded quartz veinlets may be used to iden-
tify most, but not all, Cu-poor porphyry Au deposits (Vila and
Sillitoe, 1991).

Where lower grade intermineral intrusions and barren late-
and postmineral intrusions or diatremes are volumetrically
important, the original mineralized rock volumes may be
physically disrupted and ore-zone geometries radically changed
and generally rendered less continuous. Where intense chlo-
rite-sericite or sericitic alteration overprints are developed,
the reconstitution of potassic alteration may result in either
reduction or complete stripping of original metal contents.
Furthermore, even where appreciable Au is retained in chlo-
rite-sericite assemblages, flotation recoveries are commonly
lower (<60%) than for ore from potassic zones (>80%) be-
cause some of the Au originally in solid solution and encapsu-
lated in and attached to chalcopyrite ± bornite becomes
linked to introduced pyrite (Sillitoe, 2000). 

In the more highly telescoped systems, where sericitic
and/or advanced argillic assemblages overprint appreciable
volumes of potassic and/or chlorite-sericite alteration within
porphyry intrusions, the ensuing effects can be varied. Where
the sericitic alteration is superimposed on quartz veinlet
stockworks, Cu contents in the form of the high sulfidation-
state Cu sulfides may be increased by hypogene enrichment
(e.g., Wafi-Golpu). However, if the overprinted high-sulfida-
tion assemblages also contain appreciable arsenical sulfosalts,
a situation that becomes increasingly likely upward in most
systems, the resultant mineralization is less desirable because
it is not only refractory if subjected to bacterial heap leaching
but also generates As-rich flotation concentrates that may
prove difficult to market. 

Although many hydrothermal breccias, like the late dia-
tremes mentioned above, are commonly diluents to ore, some
magmatic-hydrothermal breccias give rise to anomalously high-
grade rock volumes despite their intermineral timing. Fur-
thermore, magmatic-hydrothermal breccia cemented mainly
by quartz, tourmaline, and pyrite may be zoned downward
over hundreds of meters to chalcopyrite-rich material, which
is likely to persist into any underlying biotite-cemented brec-
cia (e.g., Los Bronces-Río Blanco; Vargas et al., 1999; Fig. 8). 

Interrelationships between porphyry intrusions and car-
bonate host rocks can influence the form and size of skarn de-
posits, typically with above-average Cu tenors. Where steeply
dipping, receptive carbonate rock sequences abut steep por-
phyry stock contacts, vertically extensive proximal skarn bod-
ies may form (e.g., the >1,600-m extent of the Ertsberg East
(Gunung Bijih) Cu-Au deposit, Indonesia; Coutts et al., 1999).
Unusually large, laterally extensive proximal skarn bodies may
form preferentially where suitable carbonate host rocks abut
the tops of porphyry stocks (e.g., Antamina; Redwood, 2004).
Structural permeability linking porphyry stocks to the fringes
of carbonate rock-dominated districts seems to be a require-
ment for formation of substantial sediment-hosted Au de-
posits (e.g., Bingham district; Cunningham et al., 2004). 

In lithocaps, permeable lithologic units are an especially
important control of the largest high-sulfidation epithermal
Au deposits, as mentioned previously, in contrast to tight
rocks, such as little-fractured lava domes and flows, which
typically host smaller, fault- and fracture-controlled deposits.
Any carbonate rocks affected by the lithocap environment
may be particularly receptive. However, through-going struc-
tural (fault and fracture network) and hydrothermal (phreatic
breccia and vuggy, residual quartz) permeability is probably
the most critical requirement for the development of impor-
tant high-sulfidation deposits; otherwise, inadequate late-
stage aqueous liquids from the cooling parental magma
chambers gain access to the lithocaps. Lateral transfer of such
liquids beyond lithocaps to form intermediate-sulfidation epi-
thermal deposits is also dependent on the existence of suit-
able permeability, which in a few cases is the direct continua-
tion of that utilized by the contiguous high-sulfidation
mineralization (e.g., Colquijirca, Tintic). 

Concluding Statement
Porphyry Cu deposits are arguably the most studied and

potentially best known and understood ore deposit type (e.g.,
Seedorff et al., 2005), and their relationships with the skarn
environment have been appreciated for many years (Einaudi
et al., 1981; Einaudi, 1982). Only in the last decade or so,
however, have the physicochemical connections with the
high- and intermediate-sulfidation epithermal environment
within and around overlying lithocaps been clarified (e.g.,
Hedenquist et al., 1998, 2001). The current state of geologic
understanding allows explorationists to use a combination of
empirical and genetic models with ever-increasing degrees of
confidence (Thompson, 1993; Sillitoe and Thompson, 2006).
Furthermore, the current geologic knowledge base permits
meaningful deployment of sophisticated geochemical and
geophysical techniques in some exploration programs (e.g.,
Kelley et al., 2006; Holliday and Cooke, 2007). 

Nevertheless, there is still a great deal to learn, a fact under-
scored by the relatively recent appreciation of the contrasting
metal contents of coexisting hypersaline liquids and vapors
(Heinrich et al., 1999; Ulrich et al., 1999) and experimental
determination of volatile S complexes as potentially important
Cu- and Au-transporting agents throughout porphyry Cu
 systems (Williams-Jones et al., 2002; Nagaseki and Hayashi,
2008; Pokrovski et al., 2008, 2009). A short, personalized
 selection of outstanding questions includes the following:
(1) what are the fundamental mantle and/or crustal factors
that dictate whether youthful arc segments are endowed with
giant porphyry Cu systems (e.g., central Andes), only incipi-
ently developed systems (e.g., Cascades, western United
States), or none at all (e.g., Japan)? (2) what are cross-arc lin-
eaments, and can they be demonstrated to play a truly influ-
ential role in the localization of porphyry Cu systems? (3) how
important are mafic magmas in the development of the
parental magma chambers beneath porphyry Cu systems, and
what material contributions do they make to the systems
themselves? (4) how is the single-phase magmatic liquid
transferred from the parental magma chambers to porphyry
Cu stocks or dike swarms, and what distance can be travelled
by this fluid between exiting the chambers and eventual
phase separation? (5) what are the deep processes that result
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in some porphyry Cu systems being apparently short lived
while others may remain at least intermittently active for up
to ≥5 m.y.? (6) why do some porphyry Cu deposits develop
large and high-grade magmatic-hydrothermal breccias,
whereas others have only minor examples or none at all? (7)
if externally derived, nonmagmatic brine is responsible for at
least some examples of sodic-calcic alteration, how does it ac-
cess the cores of some porphyry Cu deposits between early
porphyry emplacement and magmatic fluid ascent responsi-
ble for initiation of potassic alteration (and locally sinuous A-
type quartz veining)? (8) what controls metal depletion versus
enrichment during chlorite-sericite and sericitic overprints?
(9) what are the main mechanisms controlling the bulk
Cu/Au/Mo ratios of porphyry Cu deposits? (10) why is Au
transported to the distal limits of only a few porphyry Cu sys-
tems for concentration in sediment-hosted deposits, and why
are most of these apparently small compared to virtually iden-
tical Carlin-type deposits (Cline et al., 2005)? (11) what is the
fluid regime responsible for metal zoning in lithocaps, and
why are so many lithocaps apparently barren? (12) why do
only a few lithocaps appear to develop intermediate-sulfida-
tion epithermal precious metal deposits on their peripheries?

Effective study of these and other problems will require
field-based geochemical and geophysical work and an array of
evermore sophisticated laboratory equipment for high-preci-
sion fluid inclusion and trace element analysis, isotopic deter-
minations, isotopic dating, and experimental work on fluid
evolution and metal transport. But more fundamentally, how-
ever, we require better and more detailed documentation of
geologic relationships in porphyry Cu systems worldwide, at
all scales from the thin section to the entire system, and with
greater emphasis on the regional to district context, particu-
larly the relationship to igneous evolution. And these geologic
observations must further emphasize the relative timing of in-
trusion, brecciation, alteration, and mineralization events be-
cause isotopic dating techniques do not and may never have
the required resolution. It is acquisition of this geologic detail
that is going to enable better application of laboratory tech-
niques and, hopefully, further clarify the localization and evo-
lutionary histories of porphyry Cu systems as well as the fun-
damental controls on large size and high hypogene grade.
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