Elementos de Algebra MA3101 **Profesor:** Ángel Pardo J.

Auxiliares: Alonso Cancino T.

Juan Pedro Ross O.

Fecha: Lunes 9 de Septiembre de 2019

Control 1

P1. [Morfismos y otros]

a) (1.5 pts) Sea G un grupo finito de orden 2n, entonces existe $g \in G$, $g \neq e$ tal que $g^2 = e$. Si además G abeliano y n es impar, entonces este es único.

R: Forma 1 Si es que la proposición es falsa, entonces $\forall g \in G : g \neq g^{-1}$, Luego G tiene cardinal impar (pues tiene a todos los elementos, sus inversos y el neutro. Si es que el elemento no es único entonces hay al menos dos, luego $\{e, a, b, ab\}$ es un subgrupo, y tiene cardinal 4, lo que contradice que |G| = 2n, con n impar (por Lagrange).

R: Forma 2 Como 2||G|, tenemos que existe $P \leq G$ un 2-subgrupo de Sylow de G, sabemos que $|P| = 2^m$ con $|G| = 2^m q$, con $q \notin 2\mathbb{N}$, Sea $p \in P \setminus \{e\}$, luego $|\langle p \rangle| = 2^s$, para algun $1 \leq s \leq m$, entonces $p^{\frac{|\langle p \rangle|}{2}}$ tiene orden 2.

Como antes, ahora tenemos que |P|=2, supongamos que $P=\{e,p\}$, sabemos que |p|=|P|=2, supongamos que $q\notin P$ tiene orden 2, luego, como P es el único 2—subrupo de Sylow, $P \leq G$, así podemos considerar $qP\in G/P$, sabemos que $|\langle qP\rangle|=2$, pero esto contradice Lagrange, porque $|G/P|=n\notin 2\mathbb{N}$ y $\langle qP\rangle||G/P|$

b) (1.5 pts): Sean $M, N \subseteq G$ tales que G = MN = NM, demostrar que:

$$G/(M \cap N) \simeq (G/M) \times (G/N)$$

R: Forma 1 Consideremos el morfismo $\varphi: G \to (G/M) \times (G/N)$, tal que $\varphi(g) = (gM, gN)$. Como M,N son normales, es efectivamente un morfismo. Y es claro que $(gM, gN) = (M, N) \Leftrightarrow g \in M \cap N$, es decir que $Ker(\varphi) = M \cap N$. Por primer teorema de isomorfismos, basta que sea sobreyectivo para concluir. En efecto, sea (g_1N, g_2M) , como G = MN = NM existen $n_1, n_2 \in N, m_1, m_2 \in M$ tales que $g_1 = m_1n_1, g_2 = n_2m_2$, luego $(g_1N, g_2M) = (m_1N, n_2M)$. Por último $\varphi(m_1n_2) = (m_1n_2N, m_1n_2M) = (m_1N, m_1n_2M)$ y como $m_1n_2(n_2)^{-1} = m_1 \in M$, se concluye que $\varphi(m_1n_2) = (m_1N, m_1n_2M) = (m_1N, n_2M) = (g_1N, g_2N)$. Es decir, es sobreyectiva.

R: Forma 2 Para ver que $G/(M \cap N)$ es un producto directo de G/M con G/N basta encontrar $A, B \subseteq G/(M \cap N)$ subgrupos normales tales que $A \cap B = \{(M \cap N)\}, AB = G/(M \cap N),$ y ademas $A \simeq G/M, B \simeq G/N$.

Sea $A = N/(M \cap N)$, $B = M/(M \cap N)$, podemos notar que si $g(M \cap N) \in A \cap B$, entonces $g \in (M \cap N)$ luego:

$$g(M\cap N)=(M\cap N)$$

Por otro lado:

$$AB = NM/(M \cap N) = G/(M \cap N)$$

Puesto que NM = G.

Y finalmente $A, B \subseteq G/(M \cap N)$ se obtiene de las normalidades de N y M en G, respectivamente.

Así se concluye:

$$G/(M \cap N) \simeq A \times B \simeq (G/M) \times (G/N)$$

c) (1.5 pts): Sea $f: G \to H$ morfismo, con N = Kerf y $K \leq G$, probar que $f^{-1}(f(K)) = KN$, luego $f^{-1}(f(K)) = K \iff N \leq K$.

 \mathbf{R} : Veamos las dos inclusiones:

 (\subseteq) : Sea $y \in f^{-1}(f(K))$, entonces:

$$f(y) \in f(K)$$

Luego $\exists k \in K$ tal que:

$$f(y) = f(k) \implies f(k)^{-1} f(y) = e_H$$

$$\implies k^{-1}y \in N$$

Así tenemos que $\exists n \in N$ tal que:

$$k^{-1}y = n \implies y = kn \implies y \in KN$$

 (\supseteq) : Sea $kn \in KN$, veamos que $kn \in f^{-1}(f(K))$, en efecto:

$$f(kn) = f(k)f(n) = f(k) \in f(K)$$

Esto pues $n \in N = Kerf$, y luego $f(n) = e_H$.

d) (1.5 pts): Sea $f:G\to H$ morfismo, con H abeliano y $N\le G$ con $Kerf\le N$, entonces $N\le G$.

R: Sea $g \in G$, veamos que $gNg^{-1} \subseteq N$, por la parte anterior, tenemos que:

$$f^{-1}(f(gNg^{-1})) = gNg^{-1}$$

Esto ya que $Kerf \leq N$ y además $Kerf \leq G$, entonces como f es morfismo, tenemos que:

$$f(gNg^{-1}) = f(g)f(N)f(g)^{-1}$$

Como H es abeliano, tenemos que:

$$f(gNg^{-1}) = (f(g)f(g)^{-1})f(N) = f(N)$$

Volviendo a la parte anterior, tenemos además que:

$$f^{-1}(f(N)) = N$$

Juntando lo anterior, tenemos lo que queríamos:

$$N = f^{-1}(f(N)) = f^{-1}(f(gNg^{-1})) = gNg^{-1}$$

P2. [Fórmula de clases]

a) (1.5 pts) Sea G un grupo, demuestre que $Z(G) := \{a \in G : \forall g \in G, ag = ga\} \subseteq G$ y que para $a \in G$ fijo, $c(a) := \{g \in G : ga = ag\} \subseteq G$.

R: En efecto, es claro que Z(G) no es vacío pues tiene al neutro (conmuta con todos) y además $Z(G) \subseteq G$. Además si $x, y \in Z(G)$, se tiene que $g(xy^{-1}) = (gx)y^{-1} = (xg)y^{-1} = x(gy^{-1}) = x(y^{-1}g) = (xy^{-1})g$. Por lo tanto Z(G) es subgrupo. Por último notar que gZ(G) = Z(G)g, pues $ga = ag, \forall z \in Z(G)$. Es decir, $Z(G) \subseteq G$. Para la otra, como $ea = ae, c(a) \neq \emptyset$ y por definición $c(a) \subseteq G$. Además si $x, y \in c(a)$, se tiene que $a(xy^{-1}) = (ax)y^{-1} = (xa)y^{-1} = x(ay^{-1}) = x(y^{-1}a) = (xy^{-1})a$. Es decir, $c(a) \subseteq G$.

b) (1.5 pts) En auxiliar se le presentó la relación de equivalencia de "conjugación", y las clases de equivalencia que esta genera. Esto es:

$$aCb \Leftrightarrow \exists g \in G : ag = gb \text{ con } [a]_C = \{gag^{-1} : g \in G\}$$

Demuestre que $|[a]_{\mathcal{C}}| = [G:c(a)].$

R: Consideremos la función $\varphi: [a]_{\mathcal{C}} \to G/\approx_{c(a)}$, tal que $\varphi(gag^{-1}) = c(a)g$. Veamos que está bien definida (y que es inyectiva).

$$g_1 a g_1^{-1} = g_2 a g_2^{-1} \Leftrightarrow g_1^{-1} g_2 a = a g_1^{-1} g_2 \Leftrightarrow g_1^{-1} g_2 \in c(a) \Leftrightarrow g_1 g_2^{-1} \in c(a) \Leftrightarrow c(a) g_1 = c(a) g_2$$

Además es sobreyectiva pues si tomamos un elemento de la forma c(a)g, por construcción se tiene que $\varphi(gag^-1) = c(a)g$.

c) (1.5 pts) Concluya que para el caso en que G es finito, se cumple que

$$|G| = |Z(G)| + \sum_{\substack{T \in G/C \ |T| \ge 2}} [G : c(a_T)]$$

Donde a_T es un representante fijo de la clase T.

R: Sabemos que todo conjunto cociente forma una partición, si a eso le agregamos la parte anterior se deduce que:

$$|G| = \sum_{T \in G/c} |T| = \sum_{T \in G/c} [G : c(a_T)] = \sum_{\substack{T \in G/c \\ |T| = 1}} [G : c(a_T)] + \sum_{\substack{T \in G/c \\ |T| \ge 2}} [G : c(a_T)]$$

Donde a_T es un representante fijo de cada sumando T. Luego, basta ver que

$$|Z(G)| = \sum_{\substack{T \in G/_{\mathcal{C}} \\ |T|=1}} [G : c(a_T)].$$

Para ello notemos que

$$a \in Z(G) \Leftrightarrow ag = ga \quad \forall g \in G \Leftrightarrow \forall g \in G, g \in c(a) \Leftrightarrow c(a) = G$$

 $\Leftrightarrow G/_{\approx_{c(a)}} = \{c(a)\} \Leftrightarrow [G:c(a)] = 1 \Leftrightarrow |[a]_{\mathcal{C}}| = 1$

Es decir cada vez que sumo uno a la derecha sumo uno a la izquierda (y viceversa) por lo que se tiene la igualdad.

d) (1.5 pts) Demuestre que si $|G| = p^{\alpha}, p$ primo y $\alpha \ge 1$, entonces $Z(G) \ne \{e_G\}$. R: De la parte anterior sabemos que

$$p^{\alpha} = |G| = |Z(G)| + \sum_{\substack{T \in G/C \ |T| \ge 2}} [G : c(a_T)]$$

Además, como ya probamos que $c(a_T) \leq G$, del Teorema de Lagrange sabemos que $[G:c(a_T)]\cdot |c(a_T)|=|G|=p^{\alpha}$. Como p es primo, $[G:c(a_T)]=p^{\beta_T}$, y como $2\leq |T|=[G:c(a_T)]$, podemos decir que $1\leq \beta_T$. Es decir tengo una suma de puras potencias de p, donde ninguno es 1. Se concluye que la suma entera es múltiplo de p. Luego si se pasa restando queda que |Z(G)| es múltiplo de p y por lo tanto no puede ser 1.

P3. [Grupos de Sylow y Permutaciones]

- a) (1.5 pts) G es p-grupo ssi $\forall a \in G, \exists r \geq 0$ tal que $|\langle a \rangle| = p^r$.
 - **R:** La implicancia a la derecha es directa de Lagrange y de que $\forall a \in G$, $\langle a \rangle$ es subgrupo de G. Para la otra implicancia, si q primo divide a |G|, por el primer teorema de Sylow, se tiene que $\exists Q$ un q-subgrupo de Sylow, por el Teo. de Cauchy, $\exists a \in Q$, que tiene orden q. Luego por hipótesis q = p. Es decir el único primo que divide al cardinal de G es p.
- b) (1.5 pts) Sea G grupo, con $|G| = p^k m$, donde $\operatorname{mcd}(p, m) = 1$, sea H un p-subgrupo de Sylow de G y $K \leq G$ con $|K| = p^d$, con $1 \leq d \leq k$, tal que $K \not\subset H$, entonces HK no es subgrupo de G.

R: Sabemos que $HK \leq G$ si y solo si $H \subseteq G$ ó $K \subseteq G$, sabemos que $\exists H'$ un p-subgrupo de Sylow, tal que $K \leq H'$. Notemos que $H \neq H'$, como todos los subgrupos de Sylow son conjugados, tenemos que $\exists x \in G$ tal que:

$$xHx^{-1} = H'$$

Luego $H \not \supset G$, veamos que $K \not \supset G$:

Sabemos también que $x^{-1}H'x=H$, luego $x^{-1}Kx\subset H$, pero como $K\not\subset H$, tenemos que $x^{-1}Kx\neq K$, entonces:

$$K \not \triangleleft G \implies HK \not \triangleleft G$$

c) (1.5 pts) Demuestre que A_4 no tiene ningún subgrupo H de orden 6. Indicación, puede ser útil mostrar que si existiese siempre, al menos un ciclo de largo 3, de no estaría en él.

- **R:** Probemos primero la indicación, supongamos que sí existe, luego como $id \in H$, quedan solo 5 elementos desconocidos, además, sabemos que todo ciclo de largo 3, no es su propio inverso, sino que $x^{-1} = x^2$, por lo que si es que H tiene todos los ciclos de largo 3, estos son solo 4. Sin embargo esto no es real, pues (123), (132), (124), (142), (134) ya son 5. Vamos a la pregunta, por Lagrange sabemos que $[A_4:H]=2$, y como todo subgrupo de índice 2 es normal, tiene sentido hablar del cociente. Luego, sea $x \notin H$ un ciclo de largo 3, entonces $A_4/H=\{H,xH\}$, es decir que $x^2H=H$, o bien $x^2H=xH$. Lo último no es posible pues $x^2H=xH\Leftrightarrow x^2x^{-1}=x\in H$. Por el otro lado si $x^2\in H$, x no puede ser un ciclo de largo tres, ya que en ese caso $x^{-1}=x^2\in H\Rightarrow x\in H$.
- d) Demuestre que siempre hay más de un 5-subgrupo en A_5 . Luego explicítelos todos. **R:** Por Sylow 3, $n_5|60$, pero $n_5=1$, modulo 5. Esto solo deja como opción $n_5=1$ o $n_5=6$. Pero como A_5 es simple, se tiene que $n_5=6$. Basta tomar, por ejemplo,

$$\langle (12345) \rangle, \langle (13245) \rangle, \langle (14325) \rangle, \langle (15342) \rangle, \langle (12435) \rangle, \langle (12354) \rangle,$$

sabemos que todo ciclo de largo 5, está en A_5 (pues (abcde)=(ab)(bc)(cd)(de)), y todos son ciclos de orden 5, pero con generadores independientes, por lo que son distintos.

Tiempo: 3:00 hrs. Muchas suerte! :D