Elementos de Algebra MA3101

Profesor: Ángel Pardo J.

Auxiliares: Alonso Cancino T.

Juan Pedro Ross O.

Fecha: Viernes 16 de Agosto 2019

Trabajo dirigido, Control 1

- **P1.** Sea p primo y $m \in \mathbb{N}$.
 - a) Mostrar que $\prod_{i=1}^m C_p \not\cong C_{p^m}$.
 - b) Usando lo anterior proponga cuales los grupos abelianos de orden p^m y luego demuestre por inducción que efectivamente no hay más.
 - c) Clasificar todos los grupos abelianos finitos.
- **P2.** a) Sea G un grupo finito y p primo que divide a |G|. Entonces para todo p-subgrupo S de G, se cumple que $S \in S_p(G)$ si y solo si p no divide a [G:S]
 - b) Demuestre que si p, q son primos distintos y $|G| = pq^2$, entonces G no es simple.
- **P3.** a) Sean G y H dos grupos tales que |G| = n, |H| = m, con mcd(n, m) = 1. Muestre que el único morfismo entre G y H es el trivial.
 - b) Demuestre que si un automorfismo fija más de la mitad de los elementos de un grupo, entonces es la identidad.
 - c) Sean $H, N \subseteq G$ con $N \subseteq H$, entonces $G/H \cong (G/N)/(H/N)$.
- **P4.** a) Sean $A \leq B \leq C$, con [C:A] = p, con p primo, entonces $A = B \vee B = C$.
 - b) Sea G un grupo, probar que:

G es abeliano \iff La función dada por $\psi(g)=g^{-1}$ es un automorfismo.

- c) Sea G grupo, probar que si G tiene un numero finito de subgrupos, entonces G es finito.
- **P5.** Demuestre que A_4 tiene un subgrupo isomorfo a $C_2 \times C_2$