MA1102-4 Álgebra Lineal Profesor: Jaime San Martín. Auxiliar: Sebastián Bustos

Problema Extra - Demostrando el Teorema Fundamental del Algebra

Navegando por el mundo de internet encontre una demostración del TFA (Click) que solo utiliza herramientas de algebra lineal + un teorema de calculo diferencial.

Es decir queremos demostrar (en su versión general) que:

Teorema 1. Si p es un polinomio a coeficientes complejos entonces p tiene al menos una raiz compleja.

Por el algoritmo de la división se concluye que un polinomio a coeficientes reales de grado n tiene n raices complejas (contando posibles repeticiones).

Ahora el teorema de calculo diferencial lo enunciare para el caso particular que nos interesa, y es relativamente convincente:

Teorema 2. Sea p un polinomio a coeficientes reales de grado impar, entonces p tiene al menos una raiz real.

En todo este problema utilizaremos \mathbb{K} un cuerpo. En caso que trabajemos $\mathbb{K} = \mathbb{R}$ ó \mathbb{C} lo diremos explicitamente.

Para esto definimos la matriz compañera de un polinomio.

Definición 1. Sea $p(t) = t^n + a_{n-1}t^{n-1} + \cdots + a_0$. Se define la matriz compañera $C_p \in \mathcal{M}_{n,n}$ como:

$$C_P = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & \cdots & & \cdots & 0 & 1 \\ -a_0 & -a_1 & & \cdots & \cdots & -a_{n-1} \end{pmatrix}$$

Problema 1. Muestre que $det(C_p - tI_n) = (-1)^n p(t)$

Problema 2. Muestre que las siguientes proposiciones son equivalentes:

- 1. $\forall p \in \mathbb{K}[x] \ con \ grd(p)=n \ tiene \ una \ raiz \ en \ \mathbb{K}$
- 2. Toda función lineal $T: \mathbb{K}^n \to \mathbb{K}^n$ tiene, al menos, un valor propio en \mathbb{K}
- 3. $\forall M \in \mathcal{M}_{nn}(\mathbb{K}), M \text{ tiene un valor propio en } \mathbb{K}$

Obs 1: $\mathbb{K}[x]$ Son los polinomios con constantes en \mathbb{K}

Obs 2: Cuando se habla de los valor y vectores propios de una función lineal son los de su matriz representante.

Problema 3. Muestre que todo $T: \mathbb{R}^{2n+1} \to \mathbb{R}^{2n+1}$ función lineal tiene un valor propio real.

Definición 2. Sea $r \in \mathbb{N}$. Se definen las siguientes funciones proposicionales:

- 1. $S_1(\mathbb{K},r) := \{Para \ todo \ n \ que \ \textbf{no} \ divide \ a \ 2^r \ se \ cumple \ que: Toda \ transformación lineal <math>T : \mathbb{K}^n \to \mathbb{K}^n \ tiene \ un \ vector \ propio\}$
- 2. $S_2(\mathbb{K}, r) := \{ Para \ todo \ n \ que \ no \ divide \ a \ 2^r \ se \ cumple \ que: Si \ f, g : \mathbb{K}^n \to \mathbb{K}^n \ son \ dos \ transformaciones \ lineales \ cualesquiera \ que \ conmutan \ (f \circ g = g \circ f) \ entonces \ tienen \ un \ vector \ propio \ en \ común \ \}$

Obs: Una función proposicional es aquella que recibe ciertos parametros (en este caso el espacio en que trabajamos y un entero positivo) y nos entrega si la proposición logica a la que representa es verdadera o falsa.

Problema 4. Demuestre que $S_1(\mathbb{R},1)$ es verdadero.

Problema 5. Demuestre que $S_1(\mathbb{K},r) \implies S_2(\mathbb{K},r) \ \forall r \geq 1$

Indicación: Utilice inducción sobre la dimensión $n \ge 1$ del espacio.

Definición 3. Dada $A \in \mathcal{M}_{n,n}(\mathbb{C})$ definimos la matriz adjunta de A, A^* , de la siguiente forma $\forall k, l : (A^*)_{kl} = \overline{a_{lk}}$

Definición 4. Definimos el espacio de las matrices hermíticas de tamaño $n \times n$ como:

$$Herm_n(\mathbb{C}) := \{ A \in \mathcal{M}_{n,n}(\mathbb{C}) : A = A^* \}$$

Problema 6. Muestre que el espacio $Herm_n(\mathbb{C})$ son un espacio vectorial sobre \mathbb{R} de dimensión n^2

Definición 5. Dado $A \in \mathcal{M}_{nn}(\mathbb{C})$ se define:

$$\alpha_A \colon Herm_n(\mathbb{C}) \to Herm_n(\mathbb{C})$$

$$B \mapsto \alpha_A(B) = \frac{1}{2}(AB + BA^*)$$

$$\beta_A \colon Herm_n(\mathbb{C}) \to Herm_n(\mathbb{C})$$

$$B \mapsto \beta_A(B) = \frac{1}{2i}(AB - BA^*)$$

Problema 7. Muestre que α_A y β_B conmutan entre si

Problema 8. Muestre que si α_A y β_B tienen un vector propio comun entonces A tiene un valor propio en \mathbb{C}

Problema 9. Demuestre que $S_2(\mathbb{R},1) \Longrightarrow S_1(\mathbb{C},1)$ utilizando los problemas anteriores

Problema 10. Muestre que el espacio de las matrices simetricas de tamaño $n \times n$ es un sev de $M_{n,n}(\mathbb{K})$ de dimensión $\frac{n(n+1)}{2}$. Denotaremos este sev por $Sym_n(\mathbb{K})$

Definición 6. Dado $A \in \mathcal{M}_{nn}(\mathbb{K})$ se define:

$$\phi_A \colon Sym_n(\mathbb{K}) \to Sym_n(\mathbb{K})$$

$$B \mapsto \phi_A(B) = \frac{1}{2}(AB + BA^t)$$

$$\psi_A \colon Sym_n(\mathbb{K}) \to Sym_n(\mathbb{K})$$

 $B \mapsto \psi_A(B) = ABA^t$

Problema 11. Demuestre que ϕ_A y ψ_A son dos transformaciones lineales que commutan entre si.

Problema 12. Muestre que si B es un vector propio de ϕ_A y ψ_A entonces $(A^2 + aA + bI_n)B = 0$ para algún $a, b \in \mathbb{K}$. Si $\mathbb{K} = \mathbb{C}$ concluya que A tiene un valor propio.

Problema 13. Demuestre que $S_1(\mathbb{C}, r) \implies S_1(\mathbb{C}, r+1) \ \forall r \geq 1$ utilizando lo anterior. Y por lo tanto concluya que $S_1(\mathbb{C}, r)$ es verdad $\forall r \geq 1$. Hint: Justifique que $n = 2^k l$ para algún $k \in [1, r]$ y l es impar.

Problema 14. Dado $n \in \mathbb{N}$ escriba $n = 2^k l$ con l impar, justifique porque puede hacer esto. Justifique que $S_1(\mathbb{C}, k+1)$ es verdad y muestre que eso implica que el TFA se cumple.