MA1102-4 Álgebra Lineal

Profesor: Jaime San Martín. Auxiliar: Sebastián Bustos

Problema extra

Sea \mathbb{R}^n . Y sea H un hiperplano de \mathbb{R}^n . El objetivo de este problema va a ser caracterizar a los hiperplanos, es decir demostraremos:

$$H$$
 es hiperplano de $\mathbb{R}^n \iff \exists c \in \mathbb{R}^n \setminus \{0\} \text{ tq } H = \{x \in \mathbb{R}^n : \langle c, x \rangle = 0\}$

Recordar que H es un hiperplano si es un sev que cumple que $\exists v \in \mathbb{R}^n \backslash H$ tal que $Gen(H, v) = \mathbb{R}^n$. Donde se define $Gen(H, v) := \{h + \alpha v : \alpha \in \mathbb{R}, h \in H\}$

La demostración de \Leftarrow la realizamos en auxiliar. Por lo tanto falta ver \Rightarrow para esto siga los siguientes pasos:

Sea $v \in \mathbb{R}^n \setminus H$ algún vector tal que $Gen(H,v) = \mathbb{R}^n$, lo mantendremos fijo durante el problema.

Considere la siguiente función:

$$T: \mathbb{R}^n \to \mathbb{R}$$

 $x \mapsto T(x) = \alpha$

Donde α es algún escalar que cumple $x = h + \alpha v$, donde $h \in H$ y v el vector elegido al principio del problema.

- 1. Muestre que la función esta bien definida. Esto quiere decir que si $x = h_1 + \alpha_1 v = h_2 + \alpha_2 v$ el valor de la función es independiente de la elección de los α_i , h_i . (En definitiva hay que mostrar que la descomposición es única; $h_1 = h_2$ y $\alpha_1 = \alpha_2$)
- 2. Muestre que la función es lineal y no nula (no nula significa que $\exists x \in \mathbb{R}^n$ tal que $T(x) \neq 0$).
- 3. Muestre que Ker(T) = H
- 4. Concluya lo pedido