MA1102-4 Álgebra Lineal

Profesor: Jaime San Martín. Auxiliar: Sebastián Bustos

Auxiliar 8 - Geometría

P1. C4 P2 (i) - Algebra 2002

En \mathbb{R}^3 considere las rectas:

$$L_1: \begin{pmatrix} 0 \\ 5 \\ 1 \end{pmatrix} + t \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix} \ t \in \mathbb{R} \ \land \ L_2: \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + s \begin{pmatrix} 2 \\ 4 \\ 1 \end{pmatrix} \ s \in \mathbb{R}$$

- a) Encuentre las ecuaciones cartesianas de las rectas
- b) Demuestre que L_1 y L_2 se intersectan y encuentre la intersección
- **P2.** Sea Π un plano en \mathbb{R}^n muestre que Π es un sev ssi $0 \in \Pi$. **Obs:** Se define que V es un sub espacio vectorial afin de E si existe sub espacio vectorial y $p \in E$ tal que $V = p + \tilde{V}$. Luego Π plano siempre es un sub espacio afín.
- **P3.** Sean $\{\Pi_i\}_{i=1}^3$ planos de \mathbb{R}^3 muestre que siempre se tiene que la intersección de todos ellos es una de las siguientes opciones:
 - a) No se intersectan
 - b) Se intersectan en un único punto
 - c) Se intersectan en una recta
 - d) Son todos iguales

Convluya que para la intersección de $m \geq 3$ planos se mantiene el resultado.

P4. C5 P2 - Algebra 2003

a) Sean $p,q,r\in\mathbb{R}^3$ tres puntos no colineales. Sea π el plano que contiene a los puntos p,q,r. Pruebe que:

$$x \in \pi \iff \exists \alpha, \beta, \gamma \in \mathbb{R}$$
, tales que $\alpha + \beta + \gamma = 1$ y $x = \alpha p + \beta q + \gamma r$

b) Considere las rectas:

$$L_1 = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + t \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} : t \in \mathbb{R} \right\} \wedge L_2 = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + s \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} : s \in \mathbb{R} \right\}$$

Pruebe que el plano que contiene a L_1 y L_2 tiene por ecuación cartesiana x+y-z=1

P5. C4 P3 - Algebra 2004

a) Verifique que las rectas

$$L_1: \begin{pmatrix} 3\\4\\5 \end{pmatrix} + t \begin{pmatrix} -1\\2\\-5 \end{pmatrix} \ t \in \mathbb{R} \ \land \ L_2: \begin{pmatrix} 2\\4\\6 \end{pmatrix} + s \begin{pmatrix} 2\\1\\-5 \end{pmatrix} \ s \in \mathbb{R}$$

se intersectan en un único punto. Encuéntrelo

b) Sea Π el plano con vectores directores $d_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ y $d_2 = \begin{pmatrix} 4 \\ 0 \\ 4 \end{pmatrix}$ que pasa por el punto $P = \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix}$, y sea L la recta con vector director $d = \begin{pmatrix} 1 \\ b \\ 0 \end{pmatrix}$ que pasa por el punto $Q = \begin{pmatrix} a \\ 0 \\ 0 \end{pmatrix}$. donde $a, b \in \mathbb{R}$. Encuentre los valores de los parámetro a, b tales que

- 1) L esté contenida en Π
- 2) L y Π no tengan puntos en común
- 3) $L \cap \Pi$ contenga exactamente un solo punto

P6. Extra: Aplicación (Con uso de herramientas de diferencial)

Se define el conjunto $C^n([a,b]) = \{y : [a,b] \to \mathbb{R} : y \text{ tenga derivadas hasta orden n y son continuas en } [a,b]\}$. Demostrar que $C^n([a,b])$ es un sev de las funciones.

Sean
$$\{a_i\}_{i=0}^{n-1} \subseteq C^n([a,b])$$
 y $a_n(x) = 1$, se define el conjunto $\mathcal{H} = \{y \in C^n([a,b]) : \sum_{i=0}^n a_i(x)y^{(i)}(x) = 0 \ \forall x \in [a,b]\}.$

Demostrar que \mathcal{H} es un sev de $\mathcal{C}^n([a,b])$. Con herramientas que escapan del curso se puede probar que $\dim(\mathcal{H}) = n$.

Ahora, además sea
$$Q \subseteq \mathcal{C}^n([a,b])$$
 se define $S = \{y \in \mathcal{C}^n([a,b]) : \sum_{i=0}^n a_i(x)y^{(i)}(x) = Q(x) \ \forall x \in [a,b]\}$. Pruebe que $\forall y_p \in S$ se tiene que $S = y_p + \mathcal{H}$.

Concluya que
$$\forall y \in S \ \exists \{y_i\}_{i=1}^n \subseteq \mathcal{H}$$
 li tal que $\forall y_p \in S, \ \exists \{C_i\}_{i=1}^n \subseteq \mathbb{R}$ tal que $y = C_1y_1 + C_2y_2 + \cdots + C_ny_n + y_p$

Notar que si n = 2: S y \mathcal{H} son rectas Y para n = 3: S y \mathcal{H} son planos.

Conclusiones de lo mostrado: Las "ecuaciones" que trabajó se llaman ecuaciones diferenciales. Uno se pregunta con frecuencia que funciones cumplen cierta condición con sus derivadas [son problemas recurrentes en el area de la fisica; y por ende en la ingenieria]. Ahora lo que se probo es que una solución de una ecuación diferencial es una combinación lineal de n soluciones más una solución cualquiera. Luego el problema de resolver estas ecuaciones se reduce a buscar n+1 funciones. En el curso de ecuaciones diferenciales veran herramientas para calcular estas ecuaciones.

Ejercicio: Con lo hecho demostrar que las funciones que cumplen $f'(x) = f(x), \forall x$ son de la forma $f(x) = Ce^x$ con $C \in \mathbb{R}$

Resumen

 [Recta]: Sea d ∈ Rⁿ\{0} un vector y p ∈ Rⁿ un punto dado. La recta L que pasa por p y va en la dirección de d es el siguiente sub conjunto:

$$L = L_{p,d} = \{v \in \mathbb{R}^n : v = p + td, t \in \mathbb{R}^n\}$$

Se dice que p es una posición de L y que d es un vector director de L.

- [Obs:] A la ecuación v = p + λd, λ ∈ ℝ se le llama ecuación vectorial de la recta L.
- [Prop]: Dado d∈ Rⁿ\{0} fijo se tendrá que:

$$q \in L_{p,d} \iff L_{p,d} = L_{q,d}$$

• [Prop]: Dado $p \in \mathbb{R}^n$ fijo, se tendrá:

$$L_{p,d} = L_{p,\overline{d}} \iff \exists \lambda \in \mathbb{R} \setminus \{0\} : \overline{d} = \lambda d$$

- [Vectores Paralelos]: Sean v, w ∈ ℝⁿ. El vecotr v se dice paralelo a w si ∃λ ∈ ℝ\{0} : w = λv. Sea anota v||w
- [Traslación de un conjunto] Sea A ⊆ ℝⁿ y p ∈ ℝⁿ definimos la traslación de A en el vector p por:

$$p+A=\{p+x:x\in A\}$$

- [Prop] Las rectas que pasan por p∈ Rⁿ son las traslaciones en p de las rectas que pasan por el origen.
- [Prop] Sean p, q ∈ Rⁿ, con p ≠ q. La recta de posición p y vector director d = q − p es la única que pasa por ambos puntos, p y q.
- [Plano] Sea p ∈ Rⁿ y d₁, d₂ ∈ Rⁿ\{0} no paralelos se define el plano que pasa por p como:

$$\Pi_{p,d_1,d_2} = \{v \in \mathbb{R}^n : v = p + sd_1 + td_2, s, t \in \mathbb{R}\}$$

- [Obs]: v = p + sd₁ + td₂, s, t ∈ ℝ se llama ecuación vectorial del plano
- Dado p ∈ Rⁿ, todo plano que pasa por p es la traslación en p de un plano que pasa por el origen, y si trasladamos en p un plano cualquiera que pasa por el origen, obtenemos un plano que pasa por p
- [Puntos colineales] p, q, r se dice colineales si p ∈
- Sean p, q, r tres puntos no colineales en Rⁿ. Probar que si d₁ = q - p y d₂ = r - p, entonces Π_{p,d₁,d₂} es el único plano que pasa por p, q y r
- [Ecuaciones cartesianas Recta] Sea p = (p₁,...,p_n)^t ∈ ℝⁿ y d = (d₁,...d_n)^t ∈ ℝⁿ\{0} las ecuaciones cartesianas de L_{n,d} son de la forma:

$$\frac{x_1 - p_1}{d_1} = \frac{x_2 - p_2}{d_2} = \dots = \frac{x_k - p_k}{d_k}$$
 \vdots
 $x_n = p_n$

Se obtienen despejando t y son n incognitas y n-1

[Ecuaciones cartesianas Plano] Haciendo el mismo analisis anterior se tiene que en R³ existen A, B, C, D ∈ R con A, B ó C ≠ 0 tal que:

$$x \in \Pi \iff D = Ax + By + Cz$$