MA1102-4 Álgebra Lineal

Profesor: Jaime San Martín. Auxiliar: Sebastián Bustos

Auxiliar 4 - Espacios Vectoriales

P1. Muestre que los siguientes conjuntos, con sus operaciones respectivas son espacios vecotriales:

- a) Sean X un conjunto. $(\mathcal{F}(X,\mathbb{R}),+)$ es espacio vectorial sobre R. Donde $\mathcal{F}(X,Y)=\{f:X\mapsto Y|\text{ f es función}\}$
- b) $\mathbb{R}^{\mathbb{N}} := \{(a_n)_n | a_n \in \mathbb{R}, \forall n \in \mathbb{N}\}$ se define $(a_n)_n + (b_n)_n = (a_n + b_n)_n$ y $\lambda(a_n)_n = (\lambda a_n)_n$. Entonces $(\mathbb{R}^{\mathbb{N}}, +)$ es
- c) Pruebe que para $n \in \mathbb{N} \setminus \{0\}$ y \mathbb{K} un cuerpo. $GL(n, \mathbb{K}) = \{M \in \mathcal{M}_{n,n}(\mathbb{K}) | M \text{ es invertible } \}$ **NO** es ev con la multiplicación de matrices sobre \mathbb{K} .
- d) [**Propuesto**] En R definimos x * y = xy para $x, y \in \mathbb{R}_+ \setminus \{0\}$ y con $k \times x = x^k$ $k \in \mathbb{Z}$ entonces $(\mathbb{R}_+, *)$ es ev sobre \mathbb{Z} .
- e) [Propuesto] Sea $n \ge 1$ y $m \ge 1$. $(\mathcal{M}_{n,m}(\mathbb{K}),+)$ es ev sobre \mathbb{K} .

P2. Muestre que los siguientes conjuntos, con sus operaciones respectivas son sub espacios vectoriales:

- a) Pruebe que para $n \in \mathbb{N} \setminus \{0\}$ y K un cuerpo. Se define $V(n, \mathbb{K}) = \{M \in \mathcal{M}_{n,n}(\mathbb{K}) | V \text{ sea invertible y triagunlar superior}\}$, entonces (V, \cdot) **NO** es sev de $(GL(n, \mathbb{K}), \cdot)$
- b) $(P_m(\mathbb{R}), +)$ los polinomios de grado a lo mas m son sev de $(\mathcal{F}(X, R), +)$.
- c) Sea $M \in \mathcal{M}_{n,m}(\mathbb{R})$. $V(M) = \{x \in \mathbb{R}^m | Mx = 0\}$ es sev de \mathbb{R}^n .

P3. C2 P3 (a) - Lineal 2015-1

Sea V un ev sobre \mathbb{K} y sean S, T sev de V.

- a) Demuestre que $S \cup T$ es un sev de V ssi $S \subseteq T$ o $T \subseteq S$
- b) Demuestre que $S \cap T$ es siempre un sev de V.

P4. C5 P2 (a) y (b) - Algebra 1996

Sea E un espacio vectorial sobre un cuerpo K. En $E \times E$ se definen las siguientes operaciones:

$$(u,v) + (u',v') = (u+u',v+v')$$
$$\lambda(u,v) = (\lambda u, \lambda v)$$

- a) [Propuesto] Pruebe que $E \times E$, con las operaciones anteriores, es un espacio vectorial sobre K.
- b) Considere los conjuntos

$$\begin{array}{lcl} \delta & = & \{(u,v) \in E \times E | u = v\} \\ \overline{\delta} & = & \{(u,v) \in E \times E | u = -v\} \end{array}$$

Pruebe que son subespacios vectoriales de $E \times E$

P5. C1 P1 (b) - Lineal 2015-2

Para cada $\alpha \in \mathbb{R}$ se define: $V_{\alpha} = \{ p \in P_4(\mathbb{R}) \text{ con } p(x) = a + bx + cx^2 + dx^3 + ex^4 | a = e, b = d, a + b + c + d = \alpha \}$ Demuestre que V_{α} es sev de $P_4(\mathbb{R})$ ssi $\alpha = 0$.

P6. C5 P2 (i) y (iii) - Algebra 1997

Sean
$$U = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \in \mathcal{M}_{2,2}(\mathbb{R}) | a, b \in \mathbb{R} \right\}$$
 y $V = \left\{ \begin{pmatrix} c & d \\ 0 & 0 \end{pmatrix} \in \mathcal{M}_{2,2}(\mathbb{R}) | c, d \in \mathbb{R} \right\}$ muestre que son subespacios vectoriales de $\mathcal{M}_{2,2}(\mathbb{R})$

1

P7. C5 P2 (i) - Algebra 1998

Sea $m \in \mathbb{N} \setminus \{0,1\}$ y considere el conjunto $P_m(\mathbb{R})$ de los polinomios de grado menor o igual que m con coeficientes reales. Es decir: $p \in P_m(\mathbb{R})$ si $p(x) = a_0 + a_1x + ... + a_mx^m$. Se define el conjunto:

 $V = \{p \in P_m(\mathbb{R}) : \forall i \in \{0, ..., m\} a_i = a_{m-i}\}$. Demuestre que V es sev de $P_m(\mathbb{R})$.

P8. C5 P2 (a1) - Algebra 1999

Para $n \in \mathbb{N}$ se define $P_n(\mathbb{R})$ como el espacio vectorial de los polinomios de grado menor o igual a n a coeficientes reales. Sea $V = \{p(x) \in P_3(\mathbb{R}) | p(x) = q(x)(x^2 + 5)$ para algún polinomio a coeficientes reales $q(x)\}$ demuestre que V es un sev.

P9. C5 P3 (a) y (b) - Algebra 2002

Sea $M_{2,2}(\mathbb{R})$ el espacio vectorial de las matrices de 2×2 a coeficientes reales sobre el cuerpo de R. Considere los subconjuntos W_1, W_2 de $M_{2,2}(\mathbb{R})$ definidos por:

$$W_1 = \{A \in \mathcal{M}_{2,2}(\mathbb{R}) | a_{1,1} + a_{1,2} + a_{2,1} + a_{2,2} = 0\}$$

$$W_2 = \{A \in \mathcal{M}_{2,2}(\mathbb{R}) | traza(A) = 0\}$$

Demuestre que W_1, W_2 son sev de $M_{2,2}(\mathbb{R})$.

P10. [Propuesto] C2 P2 (a) - Lineal 2014-1

Considere en \mathbb{R}^2 las siguientes operaciones:

$$(u,v) * (u',v') = (u+u'-2,v+v'-1)$$

$$\lambda(u,v) = (\lambda(u-2),\lambda(v-1)) + (2,1)$$

Demuestre que \mathbb{R}^2 es un ev sobre \mathbb{R} .

Resumen

■ [Espacio Vectorial] Dado un grupo abeliano (V, +) y un cuerpo \mathbb{K} , con una ley de composición externa. Diremos que V es un espacio vectorial sobre \mathbb{K} si $\forall \lambda, \beta \in \mathbb{K}, \forall x, y \in V$:

Ax1: $(\lambda + \beta)x = \lambda x + \beta x$

Ax2: $\lambda(x+y) = \lambda x + \lambda y$

Ax3: $\lambda(\beta x) = (\lambda \beta)x$

Ax4: $1 \cdot x = x$ donde 1 es el neutro multiplicativo del cuerpo K.

- [Subespacio Vecotrial] Sea V un espacio vectorial sobre un cuerpo \mathbb{K} . Diremos que $U \subseteq V$ es sub espacio vectorial (sev) de V si cumple:
 - a) $U \neq \emptyset$
 - b) $\forall u, v \in U, u + v \in U$
 - c) $\forall \lambda \in \mathbb{K}, \forall u \in U, \lambda u \in U$
- [Caracterización Subespacio Vectorial] Sea un espacio vectorial V sobre un cuerpo \mathbb{K} . U es sev ssi

- a) $U \subseteq V$
- b) $U \neq \emptyset$
- c) $\forall \lambda \in \mathbb{K}, \forall u, v \in U, \lambda u + v \in U$
- [Combinación Lineal] Sea V un ev. Dado una colección $\{v_i\}_{i=1}^n \subseteq V$ y $\{\lambda_i\}_{i=1}^n$. Denominamos combinacion a la suma ponderada de vectores:

$$\sum_{i=1}^{n} \lambda_i v_i$$

■ Independencia Lineal Un conjunto de vectores $\{v_i\}_{i=1}^n \subseteq V$ se diran linealmente independientes (li) si

$$\sum_{i=1}^{n} \lambda_{i} v_{i} = 0 \implies \lambda_{i} = 0 \forall i \in \{1, ..., n\}$$

■ **Dependencia Lineal** Un conjunto de vectores $\{v_i\}_{i=1}^n \subseteq V$ se diran linealmente dependientes (ld) si **no** son linealmente independientes.