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An exact solution for the scattering wavefunction from a nonlocal potential in the presence of Coulomb 
interaction is presented. The approach is based on the construction of a Coulomb Green’s function in 
coordinate space whose associated kernel involves any nonlocal optical potential superposed to the 
Coulomb-screened interaction. The scattering wavefunction, exact solution of the integro-differential 
Schrödinger’s equation, poses no restrictions on the type of nonlocality of the interaction nor on the 
beam energy.
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1. Introduction

Beyond its intrinsic merit, the value of counting on an exact 
solution to any given problem is that it provides with accuracy 
benchmarks for alternative approaches. In the particular case of 
the interaction of a single nucleon with a nucleus it is well es-
tablished that the coupling is nonlocal, feature that arises from 
the fermionic nature of all interacting nucleons. In the presence 
of a nonlocal potential Schrödinger’s equation for scattering waves 
becomes integro-differential. Explicit treatments of nonlocalities 
in Schrödinger’s equation is an issue that has captured increas-
ing interest from the stand point of ab-initio theories and models, 
specially aiming to global approaches for structure and reactions 
[1–3]. Therefore, robust methods able to provide solutions to the 
wave equation for any kind of kernel become imperative to accu-
rately treat and assess model-independent nonlocalities of nuclear 
interactions. To this date, however, it can safely be stated that 
the only established kernel-independent approach that solves ex-
actly Schrödinger’s equation for the wavefunction – in the presence 
of Coulomb interaction – is the one reported in Refs. [4,5]. The 
method is based on finite difference techniques, reducing the prob-
lem to a matrix equation for the wavefunction. In this work we 
present an alternative solution to the integro-differential equation, 
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resulting in a non-singular integral equation readily invertible. The 
key feature in this case is the construction of a Green’s function ca-
pable of accounting exactly for the underlying long-range Coulomb 
interaction.

In the context of nucleon–nucleus scattering, physical quantities 
of major interest are the scattering amplitudes and wavefunctions. 
The latter being useful, for example, in distorted wave Born ap-
proximation applications. When expressed in coordinate space the 
equation for the wavefunction becomes integro-differential. Early 
solutions to this problem were proposed by Perey and Buck [6], 
transforming the non-local potential by a local-equivalent. A short-
coming of this approach is that the calculated outgoing wavefunc-
tion differs from the exact one, distortion which is known as Perey 
effect and characterized by the Perey correction factor [7].

Other solutions to Schrödinger’s integro-differential equation 
follow iterative procedures [7,8]. In these schemes Schrödinger’s 
differential equation is integrated with a non-homogeneous term 
consisting of the projection of the nonlocal potential onto an in-
termediate solution, Unl|χi〉. These procedures begin with a given 
seed to generate the starting solution |χ0〉, with subsequent itera-
tions until convergence is reached. These iterative methods may 
require prior knowledge of the solution in order to make con-
vergence more efficient, though there is no guarantee to con-
verge to the correct solution. In the case of Ref. [9], a mean-value 
technique is applied to approximate Unl|χi〉, reducing the prob-
lem to a second-order homogeneous differential equation. Quite 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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recently another approach has been proposed to deal with nonlocal 
potentials [10], where a Taylor approximation for the radial wave 
function is applied. This strategy is based on the assumption that 
nonlocality is dominant around the diagonal in coordinate space, a 
non universal feature as reported in Ref. [11] for microscopic po-
tentials based on off-shell g matrices.

Another method to calculate waves off nonlocal potentials in 
the presence of long-range Coulomb interaction is that of Refs. [12,
13], where Lanczos technique is used to solve integral equations 
derived from the nonlocal Schrödinger equation. More recently, 
in Refs. [14,15] a numerical treatment to this problem has been 
proposed with the use of Berggren basis, where an off-diagonal ap-
proximation is used to control the Coulomb singularity along the 
diagonal in momentum space. Applications of this approach have 
been restricted to low energies and intermediate mass targets.

Solutions to the scattering problem in momentum space have 
also been investigated [16–22]. See Ref. [23] for a review on the 
subject. While an advantage of momentum-space approaches is 
that nonlocalities are naturally accounted for, one of its drawbacks 
is that no method is available to extract the associated scattering 
waves. In the absence of Coulomb interaction the calculation of 
scattering amplitudes is rather straightforward, reducing the prob-
lem to a Lippmann–Schwinger integral equation for the scattering 
matrix. However, in the presence of Coulomb potential the ap-
proach cannot be applied right away due to the ∼1/q2 singularity 
of the interaction. An exact solution addressing this singularity has 
been proposed by Vincent and Phatak by means of a cut-off tech-
nique to the Coulomb long-range tail [24]. This approach has been 
applied to proton–nucleus scattering at intermediate energies [17], 
where its accuracy is significantly improved after a detailed multi-
pole treatment of the charge form factor convoluted with a sharp 
cut-off potential [25].

In this article we present exact solutions for scattering waves 
off any finite-range nonlocal potential in coordinate space, where 
the Coulomb interaction is included without approximation. The 
approach, briefly sketched in an appendix of Ref. [26] in the con-
text of quasielastic (p, n) charge-exchange reactions, is not re-
stricted on energy of the projectile, charge of the colliding particles 
nor nature of the nonlocality.

This paper is organized as follows. In Sec. 2 we lay out the 
framework and present a formal solution to the scattering problem 
with nonlocal potentials in the presence of Coulomb interactions. 
We provide a demonstration of the solution and illustrate its con-
sistency with a numerical example. In Sec. 3 we present the main 
conclusions of the work.

2. Integral equation for scattering waves

Let us consider the collision of a proton with a nucleus of 
charge Ze. The interaction U between them is given by the sum 
of a pure hadronic contribution (U H ) and the Coulomb interaction 
(UC ) due to the charge distribution of the nucleus, U = U H + UC . 
The hadronic part is regarded in general as a nonlocal operator so 
that the total potential can be cast as the sum of a point-Coulomb 
and short-range terms,

U (r′, r) = U [s](r′, r) + β

r
δ(r′ − r) , (1)

with β = Ze2. Here U [s] defines the finite-range part of the inter-
action where the point-Coulomb interaction has been subtracted, 
namely U [s] = U H + UC − βδ(r′ − r)/r.

With the above construction in mind we examine Schrödinger’s 
equation for scattering waves, which in coordinate representation 
reads
−∇2ψk(r) + 2m

h̄2

∫
dr′U (r, r′)ψk(r′) = k2ψk(r′) , (2)

with m the nucleon–nucleus reduced mass and k the asymptotic 
relative momentum. Spin and isospin variables are omitted for 
notation simplicity. Considering a spin-0 closed-shell target inter-
acting with a spin- 1

2 nucleon, the following partial wave expansion 
for the scattering wavefunction becomes suitable,

ψk(r) =
√

2

π

∑
jlm

ilYm
jl1/2(r̂)eiσl

u jl(r)

r
Ym†

jl1/2(k̂) . (3)

In this expansion Ym
jl1/2 denotes spherical vectors and σl the 

Coulomb phase-shift for partial wave l. Here u jl(r) is the radial 
wavefunction. In the limit where the finite-range interaction U [s] is 
set to zero, the unperturbed wavefunction becomes a free Coulomb 
wave due to a pointlike source, ψk(r) → φc(r), where

φc(r) =
√

2

π

∑
jlm

ilYm
jl1/2(r̂)eiσl Fl(kr)Ym†

jl1/2(k̂) , (4)

with Fl the regular Coulomb function. In the absence of Coulomb 
interaction (β = 0), this expression leads to normalized plane 
waves φk(r),

φk(r) = 1σ

(2π)3/2
eik·r , (5)

with 1σ the identity in spin- 1
2 -space.

By replacing ψk(r) from Eq. (3) into Eq. (2), following standard 
procedures we obtain [27]

[
1

r

(
d2

dr2

)
r − l(l + 1)

r2
+ k2

]
u jl(r)

r
= 2m

h̄2

∞∫
0

r′ dr′U jl(r, r′)u jl(r
′) ,

(6)

where the multipoles U jl of the interaction are obtained from

U jl(r
′, r) =

∫∫
dr̂ dr̂′Ym†

jl1/2(r̂′)U (r′, r)Ym
jl1/2(r̂) . (7)

Making explicit the separation of the interaction into a pointlike 
source and finite-range remaining

U jl(r
′, r) ≡ U [s]

jl (r′, r) + β

r3
δ(r′ − r) , (8)

we obtain

Dcu jl(r) ≡
[

d2

dr2
− l(l + 1)

r2
− 2kη

r
+ k2

]
u jl(r)

= 2m

h̄2

∫
dr′rU [s]

jl (r, r′)r′u jl(r
′) . (9)

Here Dc denotes a second order differential operator which in-
cludes the point-Coulomb contribution, with the Sommerfeld pa-
rameter η given by η = mβ/h̄2k. Two linearly independent homo-
geneous solutions to Eq. (9) are the regular (Fl) and irregular (Gl) 
Coulomb wavefunctions which satisfy Dc Fl(kr) =Dc Gl(kr) = 0. We 
adopt phase conventions such that their asymptotic behavior are 
given by

Fl(z)
∣∣

z→∞ → sin(z − lπ/2 − η ln 2z + σl) ,

Gl(z)
∣∣

z→∞ → cos(z − lπ/2 − η ln 2z + σl) . (10)
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2.1. Formal solution

We now look for a solution for the scattering wavefunctions 
in the presence of the Coulomb term. Let us first recall the case 
where the Coulomb interaction is suppressed. In such a case, if V̂
represents a short-range potential, the Lippmann–Schwinger inte-
gral equation for scattering waves |ψ〉 at a given energy E reads

|ψ〉 = |φ0〉 + Ĝ0(E + iη)V̂ |ψ〉 , (11)

where |φ0〉 represents free incoming waves and Ĝ0(E + iη) =
(E + iη− K̂ )−1, corresponding to the free propagator. Here K̂ is the 
kinetic energy operator, so that K̂ |k〉 = (k2/2m)|k〉. To obtain the 
scattering waves in coordinate space it is customary to evaluate the 
free propagator in coordinate representation, i.e. 〈r|Ĝ0(E + iη)|r′〉. 
Following Joachain [27], after performing partial wave expansions 
and subsequent contour integrations in the complex k-plane it is 
found that

〈r|Ĝ0(E + iη)|r′〉

= 2m

h̄2

∞∑
l=0

l∑
m=−l

(
− i

k

)
jl(kr<)h(+)

l (kr>)Ylm(r̂)Y ∗
lm(r̂′

) , (12)

where h(+)

l = jl − inl . Here jl and nl denote spherical Bessel 
and Neumann functions, respectively. Additionally, r< = min{r, r′}, 
while r> = max{r, r′}. If we now include a Coulomb interaction, 
then Eq. (11) for the wavefunction can be cast as

|ψ〉 = |χ0〉 + ĜC (E + iη)Û [s]|ψ〉 , (13)

where |χ0〉 correspond to free incoming Coulomb waves, and

ĜC (E + iη) = 1

E + iη − K̂ − V̂ c
, (14)

to the free Coulomb propagator. In this case, V̂ C corresponds to 
the point Coulomb interaction and U [s] is defined in Eq. (1). The 
difficulty in this case is that there is no known procedure to obtain 
〈r′|ĜC (E + iη)|r〉, in analogy to the one adopted to obtain Eq. (12)
for the propagator. Most of the difficulty arises from the fact that 
K̂ does not commute with V̂ C , preventing manageable contour in-
tegrations in the complex k-plane.

To circumvent the above difficulty with Coulomb interactions, 
we look for a solution for outgoing scattering waves u jl in Eq. (9), 
expressed as the superposition of homogeneous and particular so-
lutions in the form

u jl(r) =1

k
Fl(kr)

+ 2m

h̄2

∫∫
dr′dr′′Gc(+)

l (r, r′;k)
[

r′U [s]
jl (r′, r′′)r′′] u jl(r

′′) .

(15)

For the construction of a particular solution we pursue the follow-
ing ansatz for the Coulomb propagator Gc(+)

l in partial wave l,

Gc(+)

l (r, r′;k) = − i

k
Fl(kr<)H(+)

l (kr>) , (16)

where H(+)

l = Fl − iGl .

The validity of this ansatz for Gc(+)

l calls for a demonstration. 
To do so, we verify that the formal solution expressed by Eq. (15)
for u jl , satisfies the integro-differential equation in Eq. (9). Hence, 
let us examine the action of Dc on Fl and the integral involving 

t
o

Z

w

W

M
o

∫
0

T
t

F

w

−

C
D

Z

p
w

t
g
t
t
w∫
w

K

he kernel. Since Fl satisfies Dc Fl = 0, then we just need to focus 
n

(r) ≡ Dc

∞∫
0

dr′Gc(+)

l (r, r′;k)W jl(r
′) , (17)

here W jl(r′) represents the integral over r′′ given by

jl(r
′) ≡ 2m

h̄2

∞∫
0

r′U [s]
jl (r′, r′′)r′′u jl(r

′′)dr′′ . (18)

aking explicit Gc(+)

l defined in Eq. (16) by splitting the integral 
ver r′ in Eq. (17) into two sub-intervals, [0, r] and [r, ∞), we get

∞
Gc(+)

l (r, r′;k)W jl(r
′)dr′dr′′

= − i

k

⎡
⎣H(+)

l (kr)

r∫
0

dr′ Fl(kr′)W jl(r
′)

+ Fl(kr)

∞∫
r

dr′H(+)

l (kr′)W jl(r
′)

⎤
⎦ . (19)

aking derivatives with respect to r and using the Wronskian iden-
ity

l(z)H(+)′
l (z) − F ′

l (z)H(+)

l (z) = i , (20)

e obtain

∂2

∂r2

∞∫
0

Gc(+)

l (r, r′;k)W jl(r
′)dr′

= W jl(r) + i

k

[
∂2H(+)

l (kr)

∂r2

r∫
0

dr′ Fl(kr′)W jl(r
′)

+ ∂2 Fl(kr)

∂r2

∞∫
r

dr′H(+)

l (kr′)W jl(r
′)

⎤
⎦ . (21)

ombining this result with Eq. (19) and considering that Dc Fl =
cH(±)

l = 0, we get

(r) = Dc

∫
Gc(+)

l (r, r′;k)W jl(r
′)dr′ = W jl(r) , (22)

roving that u jl as given by Eq. (15) constitutes the solution to the 
ave equation (9) for outgoing scattering waves.

An appealing feature of the propagator expressed by Eq. (16) is 
hat it is non-singular, being a continuous function of r and r′ . The 
radient of Gc(+)

l is discontinuous at the diagonal r = r′ , although 
his feature poses no particular drawback. Note that Eq. (15) takes 
he form of a Lippmann–Schwinger integral equation for scattering 
aves in the presence of Coulomb interaction, which we recast as

dr′′ [δ(r − r′′) − K jl(r, r′′)
]

u jl(r
′′) = 1

k Fl(kr) , (23)

here the kernel K jl is given by

jl(r, r′′) = 2m
2

∫
dr′Gc(+)

l (r, r′;k)
[

r′U [s]
jl (r′, r′′)r′′] . (24)
h̄
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This kernel contains the nonlocal hadronic interaction super-
posed to the Coulomb-screened electrostatic interaction. Note that 
Eq. (23) enables to obtain the actual scattering wavefunction, so-
lution of Schrödinger’s integro-differential equation, by means of 
direct matrix inversion. In this context, the solutions for the scat-
tering waves are exact. The novel feature here is that Coulomb 
interaction is also treated exactly.

The solution for u jl from Eq. (23) enables the calculation of the 
scattering amplitude, which follows from the asymptotic form of 
Eq. (15), where r is taken far away from the scattering center. In 
this limit we have

Gc(+)

l (r, r′;k)
∣∣
r�r′ −→ − i

k
Fl(kr′)H(+)

l (kr) , (25)

which once replaced in Eq. (15) for u jl yields

k u jl(r)
∣∣
r→∞ → Fl(kr) + � jl [Fl(kr) ∓ iGl(kr)] , (26)

with

� jl = −2mi

h̄2

∫∫
r′dr′ r′′dr′′ Fl(kr′)U [s]

jl (r′, r′′)u jl(r
′′) . (27)

These last two relations allow independent ways to obtain � jl . The 
latter involves direct integration of the wavefunction whereas the 
former evaluates asymptotically the ratio

� jl = ku jl(r) − Fl(kr)

Fl(kr) − iGl(kr)
, (28)

for sufficiently large r. These equivalent forms to calculate � jl

serve as a means to crosscheck consistency of the solutions. Once 
� jl is obtained, the scattering amplitude f jl and short-range phase 
shift δ̂ jl follow from

� jl = ikf jl = 1
2

(
e2iδ̂ jl − 1

)
. (29)

2.2. Numerical application

To illustrate the consistency of the solution expressed by 
Eq. (15) under nonlocal interactions, we present applications for 
p+40Ca elastic scattering at 30.3 and 300 MeV beam energies. 
For these examples we choose microscopic optical model poten-
tials taken from momentum-space in-medium folding calculations, 
where the mixed density of the target is folded to the full off-shell 
g matrix, accounting for the Fermi motion of target nucleons [28]. 
The bare nucleon–nucleon interaction used to calculate fully off-
shell g matrices is Argonne v18 [29]. The optical potential is then 
transformed to coordinate space as described in Ref. [11], resulting 
in nonlocal potentials with intricate structure, depending on the 
momentum cutoff used in the Fourier transform. The Coulomb in-
teraction corresponds to that due to a uniform charge distribution. 
No localization of hadronic contributions is performed at any stage 
of the calculations.

The numerical implementation of Eq. (23) follows from the 
discretization of r and r′ over an N-point uniform mesh, where 
r → rn = n h, with h a suitable spacing. Trapezoidal rule is ade-
quate in this case. The kernel, function of r and r′ , becomes a finite 
N × N matrix which we denote as K. The solution to Eq. (23) takes 
the form

u = (1 −K)−1u0 , (30)

with u0 the unperturbed wave Fl(kr)/k, while u denotes the scat-
tering wave over the discrete mesh. In this case we use N =
150, with spacing h = 0.1 fm. Note that the scattering wavefunc-
tion is fully determined from Eq. (30), requiring no normalization 
to match asymptotic waves. Results from this approach (referred 
in the following as Exact Scattering Waves, ESW) are compared 
with those obtained from DWBA98 code [4], which provides exact 
numerical solutions for Schrödinger’s integro-differential nonlocal 
wave equation.

In Fig. 1 we show results for the ratio-to-Rutherford of the 
elastic cross section σ(θ)/σR(θ) (a), (b) and analyzing power 
A y (c), (d) as functions of the scattering angle in the center-of-
mass reference frame. Frames on the left-hand side correspond 
to 30.3 MeV proton scattering off 40Ca, and those on the right-
hand side correspond to 300 MeV. Solid curves represent results 
based on the present approach (ESW), while dashed curves rep-
resent solutions using DWBA98 code [4]. In the case of 30.3 MeV 
we observe that differences in σ/σR become slightly noticed for 
θc.m. > 140◦ . In the case of the analyzing power, differences are 
quite moderate but enough to distinguish the two approaches. Re-
sults for proton scattering at 300 MeV are plotted up to θc.m. = 60◦ , 
corresponding to a relatively high momentum transfer of 4 fm−1. 
In this case we note that the curves for both σ(θ)/σR (θ) and A y

overlap almost completely, illustrating the level of agreement for 
the two exact approaches.

In the context of the numerical application at 30.3 MeV, we 
have also investigated the use of NLAT code [8], developed to solve 
the nonlocal Schrödinger equation using an iterative procedure. Re-
sults from this code using Perey–Buck-type potential in the version 
developed by Tian et al. [30] are in reasonable agreement with the 
ones obtained with ESW and DWBA98 approaches. This is illus-
trated in inset (e) of Fig. 1, where we plot the ratio-to-Rutherford 
of the elastic cross section. Black, red and blue curves denote re-
sults for NLAT, DWBA98 and ESW, respectively, displaying reason-
able agreement among them. However, when NLAT code is used 
for the microscopic model it fails to solve the nonlocal equation. 
Inset (e) shows results from two trial local potentials proposed in 
the regular input of NLAT. One is Koning–Delaroche (KD) poten-
tial [31] (dashed curve) and the other Chapel–Hill potential (CH89) 
[32] (dotted curve). As observed, these trial solutions lead to differ-
ent solutions for the cross sections, demonstrating the sensitivity 
to the kernel-shape of NLAT approach in its present version. It is 
worth noting that the cross section obtained from ESW using the 
microscopic potential is very similar to that from Perey–Buck–Tian 
nonlocal potential, so one would expect KD to be a reasonable trial 
potential in the microscopic case as well.

3. Discussion and concluding remarks

The solution embodied by Eq. (15) for the scattering waves in 
the presence of Coulomb interactions is a piece of knowledge over-
looked in the field. As demonstrated, this equation leads univocally 
to the solution for the scattering waves. By contrast, any iterative 
method can always be re-expressed as an infinite series, being 
also equivalent to a perturbative approach. Assessing beforehand 
its convergence is an issue with no formal solution. In order to 
anticipate the convergence of any iterative method one needs in-
formation on the initial guess in addition to the structure of the 
kernel. At the end, their effectiveness relies on empirical know-
how under controlled scenarios.

In summary, we have presented an exact solution for the scat-
tering waves off nonlocal optical potentials in the presence of long-
range Coulomb interaction. The structure of the solution poses no 
restrictions on the type of nonlocality, beam energy nor charge 
of colliding particles. Its numerical implementation leads to non-
singular finite matrices over a spatial mesh, allowing to obtain the 
scattering waves by direct matrix inversion. When compared to 
exact solutions of the integro-differential Schrödinger’s equation 
provided by the DWBA98 code, excellent agreement is observed 
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Fig. 1. Calculated ratio-to-Rutherford elastic cross section (a), (b) and analyzing power (c), (d) as functions of the center-of-mass scattering angle. Results obtained from 
microscopic nonlocal potential for 40Ca(p, p) elastic scattering at 30.3 and 300 MeV. Solid and dashed curves denote results from ESW (this work) and DWBA98, respectively. 
Inset (e) shows results for σ/σR for Perey–Buck-type potential obtained from ESW (solid blue curves), DWBA98 (solid red curve) and NLAT (solid black curves). Inset (e) also 
shows results for microscopic optical model obtained with NLAT using KD [31] and CH89 [32] potentials as starting solutions in the iterative procedure, denoted with dashed 
and dotted curves, respectively.
in the calculated scattering observables at nucleon energies of up 
to 300 MeV. With these features, the solution we present pro-
vides benchmark solutions to compare with. Since the approach 
we present leads to actual solutions for the scattering waves, it is 
well suited for distorted-wave Born approximation for nuclear re-
actions. Additionally, the approach presented here is well suited for 
coupled-channels [26], with extension to inelastic processes under-
way [33].
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