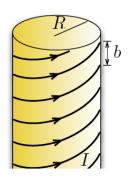
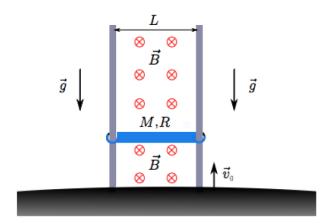
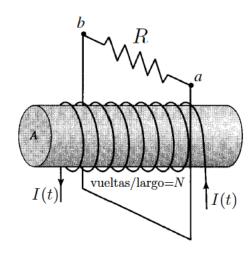
FI4004-1 Electrodinámica

Profesora: Daniela Mancilla




Tarea #4: Inducción

Fecha de entrega: 9 de septiembre de 2019


- **P1.** En la práctica, un solenoide es en realidad una hélice, con n espiras por unidad de longitud. Puede asumirse que la corriente total es la superposición de una longitudinal y una transversal. Considerando que la corriente varía en el tiempo como $I = I_0 \cos(\omega t)$.
 - a) Encuentre las componentes longitudinal y transversal de la corriente.
 - b) Calcule los campos \vec{B} y \vec{E} en todo el espacio.

- **P2.** Un par de barras conductoras (ideales) se clavan en la tierra (supuesta también un conductor ideal), paralela una de la otra, a una distancia L. Entre las barras se puede desplazar un conductor de resistencia R y masa M, siempre perpendicular y en contacto con las barras verticales. Considere la gravedad \vec{g} y la presencia del campo magnético terrestre \vec{B} , en las direcciones indicadas en la figura. Desprecie los efectos auto-inductivos.
 - a) Si la barra conductora se lanza con velocidad inicial \vec{v}_0 desde la tierra hacia arriba, ¿cuál es su altura máxima y el tiempo que demora en alcanzarla? Compare al caso en que $\vec{B} = 0$.
 - b) Si la barra conductora se deja caer desde la altura obtenida en a), calcule o argumente la magnitud del tiempo de caída con respecto al tiempo de subida. ¿Con qué velocidad llega la barra a la tierra?
 - c) Discuta como los resultados en las partes a) y b) son modificados al considerar la auto inductancia.

- **P3.** Un solenoide de N vueltas por unidad de largo está enrollado a un cilindro infinito de permeabilidad μ y de sección transversal circular A. El cilindro pasa por el medio de un circuito de resistencia R, como se muestra en la figura.
 - a) Calcule la inductancia mutua del sistema.
 - b) Si la corriente del solenoide cambia de I_1 a I_2 , donde $I_2 > I_1$, ¿cuánta carga pasa a través de la resistencia durante este cambio? ¿Cuál es el sentido en que se mueve esa carga?
 - c) Si la corriente en el solenoide está dada por: $I(t) = I_1 e^{-t/\tau} + I_2 (1 e^{-t/\tau})$, determine la corriente que circula por la resistencia R.
 - d) Si el circuito de resistencia R además posee una auto-inductancia L, determine la corriente que circula en él.

