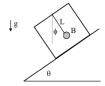


Auxiliar 6


Profesor: Patricio Aceituno Auxiliares: Gabriel Cáceres, César Gallegos y Mauricio Rojas

Viernes 23 de Agosto del 2019

P1. Una partícula se desliza con roce despreciable sobre una superficie horizontal entra con velocidad v_o a un medio gaseoso donde experimenta una desaceleración que depende de su rapidez v, en la forma $F = -\gamma v^n$, con (n > 0). Demuestre que si n = 1, el camino recorrido por la partícula hasta su detención es acotado independiente de v_o , mientras que si n = 2 la partiícula se aleja indefinidamente mientras se encuentre en el medio gaseoso.

- P2. Una partícula de masa m se mueve en el plano OXYZ sometida a una unica fuerza $\vec{F} = B_o \hat{k} \times \vec{v}$, siendo \vec{v} la velocidad de la partícula y B_o una constante, La partícula parte en el punto $\vec{r_o} = x_o \hat{i} + y_o \hat{j}$, con velocidad inicial $\vec{v_o}$, a priori en cualquier dirección.
 - a) A partir de las ecuaciones de movimiento, demostrar que el modulo de la velocidad permanece constante
 - b) Determine las coordenadas de la particula en función del tiempo
- P3. Una caja de masa M desliza hacia abajo por una superficie plana que forma un ángulo θ con la horizontal. El coeficiente de roce cinético entre la caja y la superficie es μ_c . La bolita B de masa m está atada a un extremo de una cuerda inextensible de largo L cuyo otro extremo esta fijo al techo de la caja (ver Figura). Suponga que la bolita se encuentra en reposo respecto a la caja, con la cuerda formando un cierto ángulo ϕ con la vertical, a medida que la caja desliza.
 - a) Calcule la tensión de la cuerda.
 - b) Determine el ángulo ϕ que forma la cuerda con la vertical.

