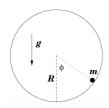
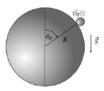
Auxiliar 4

Nicolas Vidal


Sergio Leiva

Profesor:


Auxiliares:

Lunes 19 de Agosto.

- **P1.** Una partícula de masa m puede deslizar sin roce por el interior de un tubo de radio R y eje horizontal. Se suelta desde la posición más baja, $\phi(0) = 0$, con velocidad angular $\dot{\phi}(0) = \omega_0$. Note que si en algún punto la normal se anula, entonces la partícula se despega del cilindro. Los datos son: m, R, g y ω_0 .
 - a) Escriba la ecuación de movimiento y sepárela en ecuaciones escalares.
 - b) Obtenga $\dot{\phi}(t)$ como función de $\phi(t)$ y con eso obtenga una desigualdad del tipo $\cos \phi \geq \dots$
 - c) Encuentre una expresión para la fuerza normal en función de los datos y de $\phi(t)$ y de ella obtenga una expresión para $\cos \phi$ en el punto en el cuál la masa se despegaría del tubo. Obtenga una segunda desigualdad del tipo $\cos \phi \geq \dots$
 - d) ¿Para qué valor de ω_0^2 ambas desigualdades son idénticas? ¿ Cuánto vale ϕ en tal caso?
 - e) Describa en palabras el movimiento de la partícula si ω_0^2 es levemente mayor o menor a ese valor.

- **P2.** Una partícula de masa m está ubicada sobre la superficie de una esfera de radio R, en presencia de gravedad. En el instante inicial, se lanza la partícula con una velocidad horizontal $\vec{v}_0 = v_0 \hat{\phi}$, tangente a la superficie, y con un ángulo $\theta_0 = \frac{\pi}{3}$.
 - a) Encuentre la velocidad y aceleración de la partícula en función de θ .
 - b) Determine el valor del ángulo θ^* en que la partícula se despega de la superficie.

- Propuesto. Considere una superficie cónica como la indicada en la figura, que se encuentra en un ambiente sin gravedad. En un cierto instante se impulsa una partícula de masa m sobre la superficie interior del cono, con una velocidad inicial v_0 en dirección perpendicular a su eje. En ese momento la partícula está a una distancia r_0 del vértice del cono. El roce entre la partícula y la superficie es despreciable. El ángulo entre el eje del cono y la generatriz es α .
 - a) Escriba las ecuaciones de movimiento de la partícula en un sistema de coordenadas que le parezca adecuado.
 - b) Determine la fuerza que la superficie cónica ejerce sobre la partícula cuando ésta se ha alejado hasta una distancia $r = 2r_0$ del vértice del cono. Determine la rapidez de la partícula en ese momento.

