
displacement of the top end of the spring is equivalent to the application of a driving force with 

amplitude F0 = kX0. 

kX0/m 

1 

2 

d) The amplitude of the mass in steady state is: A(ω) = 
[(ω0

2 
− ω2)2 + (γω)2] 

Substituting values ωo = 20 s−1 , k = 80 N/m, ω = 0, 30, 300 s−1 and γ = 20 s−1 . 
0.4/0.2 

A(ω)  =  
[(202 

− ω2)2 + (20ω)2] 
1 

2 

A(0) = 0.5 cm A(30) = 0.256 cm A(300) = 0.00223 cm  

Problem 2.2: (French 4-6)1 Seismograph 

a) The displacement of mass M relative to the earth is y and η is the displacement of the earth’s 

surface relative to the distant stars. Let x be the distance of mass M relative to the distant stars. 

Star

B

B’

E η

x

l

y

h

h

Left Figure: The horizontal dashed line through E is the equilibrium position of the earth relative 

to the star. The horizontal dashed line through B is the equilibrium position of the mass relative 

to the star. It is also the equilibrium position of the mass relative to the seismometer. 

Right Figure: The dashed line through E, is the same as in the left figure. B is now a distance 

η farther away from the star than B (we indicate this with B’). The dashed line through B’ is no 

longer the equilibrium position of the mass relative to the star, but it is the equilibrium position 

relative to the seismometer. 

We can see from the figures that: x = l + y + h + η or ẍ = η̈ + ÿ. Newton’s 2nd law only 

applies to an inertial reference frame. The acceleration of M is ẍ. However, the spring force and 

the damping force depend on the displacement and velocity relative to the Earth (i.e. relative to 

B’). The amount by which the length of the spring changes is y in both reference frames (that of 

the star and that of the seismograph). Thus the magnitude of the spring force is ky. Since it is 

assumed that the air inside the closed box of the seismograph follows the motion of the Earth, the 

1The notation “French” indicates where this problem is located in one of the textbooks used for 8.03 in 2004: 

French, A. P. Vibrations and Waves. The M.I.T. Introductory Physics Series. Cambridge, MA: Massachusetts 

Institute of Technology, 1971. ISBN-10: 0393099369; ISBN-13: 9780393099362. 
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damping force is −bẏ. Notice, if the air does not follow the Earth then the damping force would  

k b 
be −b(ẏ + η̇). Hence: Mẍ = −ky − bẏ 0 = η̈ + ÿ + y + ẏ

M M 

d2y dy d2η b k 
−η̈ = ÿ + γẏ + ω0

2 or + γ + ω0
2 y = − where γ = and ω0

2 = . 
dt2 dt dt2 m m 

b) Steady state solution for y when η = C cos(ωt). 

d2η d2y dy
η = Ccos(ωt) = −Cω2 cos(ωt) + γ + ω0

2 y = Cω2 cos(ωt) (2)
dt2 dt2 dt 

To solve the equation using the complex exponential method we reframe the above equation as 
d2z dz 

follows + γ + ω0
2 z = Cω2 e 

iωt . Let z = Aei(ωt−δ) be the solution to the above equation. Now 
dt2 dt 

y = Re(z). Substituting these in Eq. 2. 
i(ωt−δ) iωt (−ω2A + iγωA + ω0

2A)e = Cω2 e 

(ω0
2 
− ω2)A + iγωA = Cω2 e 

iδ 

Equating the real and imaginary parts of the equation we get: 

(ω0
2 
− ω2)A = Cω2 cos δ γωA = Cω2 sin δ 

Therefore the steady state solution for y is y = A cos(ωt − δ) where 

Cω2 γω 
A(ω) = tan δ(ω) = 

[(ω0
2 
− ω2)2 + (γω)2] 

1

2 ω0
2 
− ω2 

Behavior of A(ω) for various values of ω 

ω → 0 A → 0 ω → ω0 A → QC ω → ∞ A → C 

c) The graph of the amplitude A of 

the displacement y (in units of C) as 

a function ω is shown to the right. 

Note: Q=ω0/γ is taken to be 2. 
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0
   

Part(d) 
 /

0
= 15/600 = 0.025

d) Period of the Seismograph Ts is 30 s and Q is 2. 
2π π ω0 π/15 π 

Ts = 2π/ω0 = 30 s ω0 = = rad/s γ = = = rad/s
30 15 Q 2 30 

Now the time period of oscillations of the earth’s surface is 20 min and the amplitude of maximum 
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acceleration is 10−9 m/s2 . 
2π 2π π 2 amax

ω = = = rad/s = Cω2 = 10−9 m/s C = = 3.6 × 10−5 m 
Ts 1200 600 

amax 
ω2 

Substituting values for ω, ω0, γ and C in the equation for amplitude A we get: 
Cω2 

A(ω) = A = 2.28 × 10−8 m 
[(ω0

2 − ω2)2 + (γω)2] 
1 
2 

Notice that C (amplitude of the Earth’s oscillations) is about 1600 times larger than A. It seems 
to us that this is a very poorly designed seismometer. Values of A of the order of 2.3 × 10−8 m 
must be observable for this tremor to be detected. If the frequency of the oscillations ω » ω0 the 
value of A → C (see the figure for Part (c) above). The amplitude of the earthquake oscillations 
can then directly be read off the seismometer. 

e) Problem 2.2 and 2.1 are very different. In the 
figure below, we show the amplitude A(ω) versus 
ω for Problem 2.1 [Note: ω0 = 20 Hz, γ = 20 Hz, 
and F0/m = 2 N/kg ]. Compare this to the plot in 
Problem 2.2 as shown in Part (c) above. This dif-
ference is best demonstrated by comparing their 
amplitudes at very low (near zero) and very high 
frequencies. Let the amplitude in Problem 2.1 
be A2.1 and the amplitude of the seismometer be 
Aseismo. 

ω → 0 ⇒ A2.1 → 
F0 

mω2 
0 

Aseismo → 0 

ω → ∞ ⇒ A2.1 → 0 
F0

ω → ω0 ⇒ A2.1 → Aseismo → QC
γmω0 

As you can see, there is a major difference between harmonically displacing the top end of the 
spring and harmonic oscillations of the earth. 

Problem 2.3: (French 4-10) Power dissipation 

a) Let dW be the work done against the damping force in time dt. Now the work done is the dot 
product of the force and the distance over which it is applied, dW = Fanti−dampingdx = bv · dx. 
Hence, the instantaneous rate of doing work against the damping force is: 

W ork Done dW dx 
P = = = bv = bv2 (3)

T ime T aken dt dt 

b) The equation of motion is of the form x = A cos(ωt − δ), hence the mean power dissipated can 
be calculated from part (a) as shown below: 

P̄ = (bẋ2)|T = [b(−Aω sin(ωt − δ))2]|T = bA2ω2[sin2(ωt − δ)]|T 

1 1 bA2ω2 

P̄ = bA2ω2 ( Since sin2(ωt − δ)|T = ) or P = 
2 2 2 
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Aseismo → C 
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