Editor:

Martin Fowler

ThoughtWorks

fowler@acm.org

The Difference between
Marketecture and
Tarchitecture

Luke Hohmann

development
Drocesses

address more
than how to
write code.

0740-7459/03/$17.00 © 2003 IEEE

ver the years, I’'ve been fortunate
enough to help build a fairly diverse set
of software solutions. Along the way,
I’ve played various roles, including in-
dividual contributor, direct manager,
and senior member of the corporate
executive staff. I've worked in engineering,
product marketing and product management,
quality assurance, first- and sec-
ond-line support organizations,
and on technical publications. One
thing I’ve learned is that a gap of-
ten exists between product man-
agement/marketing and engineer-
ing/development organizations.
Although we might briefly
chuckle when Dilbert calls atten-
tion to this gap, most of us who’ve
lived through it (or helped cause it)
cringe at its effects: product and
service offerings that ultimately fail to meet
market needs. An essential step to bridging
this gap is to clarify the various responsibilities
associated with product management and
marketing versus those associated with prod-
uct engineering and development. We must
also clarify the manner in which the marketing
and technical aspects of the system work to-
gether to accomplish business objectives.

Who is responsible for what?

We can divide software systems architec-
turally along two broad dimensions. The first
is the tarchitecture or “technical architecture”
and the second is the marketecture or “mar-
keting architecture.” I refer to the traditional

Published by the IEEE Computer Society

software architect or chief technologist as the
tarchitect and the product-marketing manager,
business manager, or program manager re-
sponsible for the system as the marketect.

The tarchitecture is the dominant frame of
reference when developers think of a system’s
architecture. For software systems, it encom-
passes subsystems, interfaces, the distribution
of processing responsibilities among processing
elements, threading models, and so forth. In re-
cent years, several authors, including Martin
Fowler and Mary Shaw, have documented dis-
tinct tarchitecture styles or patterns, including
client-server, pipeline, embedded systems, and
blackboards. Our profession has begun to doc-
ument how and when these various kinds of ar-
chitectures are appropriate. It remains to be
seen if we’ll have the discipline to routinely
leverage this knowledge.

Marketecture is the business perspective of
the system’s architecture. Among other things,
it embodies

B The complete business model, including li-
censing and selling models

Value propositions

Technical details relevant to the customer
Data sheets

Competitive differentiation

Brand elements

The mental model that the marketing de-
partment attempts to create for the customer
B The system’s specific business objectives

Additionally, it includes—as a necessary com-
ponent for shared collaboration between the

IEEE SOFTWARE 51

tarchitects, marketects, and develop-
ers—descriptions of functionality that
are commonly included in marketing
requirements documents, use cases, XP
stories, and so forth.

Although tarchitecture and marketec-
ture influence each other, marketecture
dominates. Marketectural concerns—
ranging from usability, installability,
upgradability, supportability, deployabil-
ity reliability, and other so-called non-
functional requirements—change radi-
cally from market to market. They all
influence the tarchitecture.

When 1 speak of the difference be-
tween marketecture and tarchitecture,
most people clamor for specific examples.
Here are two for your consideration.

One “heavy-client” client-server ar-
chitecture that I helped create had a
marketing requirement for a “modu-
lar” extension of system functionality.
Its primary objective was to separately
price each module and license it to cus-
tomers. The business model was that,
for each desired option, customers
would purchase a module for the
server that provided the necessary core
functionality. Each client would then
install a separately licensed plug-in to
access this functionality. In this man-
ner, the modules resided at both the
server and client level. One example
was the extended reporting module—a
set of reports, views, and related data-
base extract code that a customer
could license for an additional fee. In
terms of our pricing schedule, we sold
modules as separate line items.

Instead of creating a true module on
the server, we simply built all the code
into the server and enabled and disabled
various modules with simple Boolean
flags. Those in product management
were happy because the group could in-
stall and uninstall the module in a man-
ner consistent with their goals and ob-
jectives for the overall business model.
The developers were happy because
building one product with Boolean flags
is considerably simpler than building
two products and dealing with the is-
sues that would inevitably arise when

52 IEEE SOFTWARE

installing, operating, maintaining, and
upgrading multiple components. Inter-
nally, this approach became known as
the “$50,000 Boolean flag.”

The second example illustrates that
the inverse to this approach can also
work quite nicely. In this same system,
we sold a client-side Component Object
Model application programming inter-
face that was physically created as a sep-
arate dynamic linked library. This let us
easily create and distribute bug fixes, up-
dates, and so forth. Instead of upgrading
a monolithic client (which is challenging
in Microsoft-based architectures), we
could simply distribute a new DLL.
Marketing didn’t sell the API as a sepa-
rate component but instead promoted it
as an integrated part of the client.

The big picture

Software architecture has created var-
ious definitions. Most of the ones that
Pve found useful have some element of
trying to capture the system’s big picture.
The same can be said of development
processes, the majority of which try to
capture development’s big picture. From
XP to SCRUM to “just get it done,”
good development processes address
more issues than just how to write code.
They deal with issues ranging from
structuring the team to quality assurance
practices to scheduling.

These are big-picture issues, but
they’re not big enough. If you’re run-
ning a business whose products or ser-
vice offerings are based on software,
you need the bigger Big Picture that a

My analysis indicated
that my client was one
release away from
l0sing more than
US$S5 million in
licensing revenue.

http://computer.org/software

comprehensive product development
process can provide. When conducted
properly, these processes kick in before
development begins, and they are al-
ways present after development is com-
plete. To see what I mean, watch what
your development organization does af-
ter it celebrates shipping the gold mas-
ter—it starts on the next version. The
rest of the organization, from customer
and professional services, continues to
work on the release, deploying it to cus-
tomers, managing upgrades, conducting
press and analyst tours, and so forth.

One reason the comprehensive prod-
uct development process is a bigger Big
Picture is that this is where we calculate
profit and loss. Put another way, most
organizations view engineering as a cost
center. The marketect is usually consid-
ered a “mini CEO,” responsible for the
product’s overall financial health. The
effects of this responsibility can be far-
reaching, especially if they are not done
effectively.

One of my clients recently asked me
to conduct a business audit of one of
their products. The technical team was
in the process of transforming a heavy-
client client-server application to a
browser-based application. Everyone
was thrilled with the progress they had
made: customers liked the browser ap-
proach (which was easier to manage
and deploy), the technical team en-
joyed learning new skills, and market-
ing was busy making plans on how to
offer the new browser-based applica-
tion as an application service provider.

I wasn’t so thrilled. My analysis in-
dicated that my client was one release
away from losing more than US$5 mil-
lion in licensing revenue. In the old sys-
tem, both the client and server were of-
fered as a perpetual license with a 15
percent annual maintenance fee. As the
development team created releases that
migrated functionality from the client
to the new server, my client simply
shipped them to customers based on
the terms of their existing maintenance
agreement. Unfortunately, they had
forgotten to consider that once all the
functionality in the client had moved to
the server, they would lose their license

revenue associated with the client. Be-
cause they had not created any means
to recoup the revenue, resolving the
problem wasn’t easy.

First, we delayed removing the
client until we had a way to recoup the
revenue. As you can imagine, this was
not well received by the technical team,
but once they understood the financial
implications, they supported the deci-
sion. Next, I worked with the legal
team to see if we had any freedom to
charge upgrade fees for a new release
or increase the maintenance fees on the
server (because it had more functional-
ity). We couldn’t charge an upgrade
fee, but we could increase maintenance
fees, provided the customer hadn’t
locked in the maintenance agreement
(several had). Finally, T suggested re-
vamping the server’s business model to
separately license each browser appli-
cation, increasing both list and average
selling price. Although some of these
changes were painful, they were less
painful than losing $5 million.

hat does this mean for you? In-

dustry pundits, regardless of in-

dustry, tell us that to be successful
in today’s business climate, we must
transcend a self-absorbed focus on our
jobs and understand how our work fits
into the business’ larger objectives. For
developers, this can mean remembering
to check with your marketect depart-
ment regarding the impact of a major
tarchitectural change. To help you get
started, send me the answer to the fol-
lowing questions: How does your com-
pany make money (that is, what is your
business model)? What new technology
will most affect your ability to lower
your customer’s total cost of owner-
ship? Which nonfunctional require-
ment is most important to your cus-
tomers? I look forward to receiving
your answers. @

Luke Hohmann is a management consultant for prod-
uct management, software development, and organizational ef-
fectiveness. Portions of this arficle were based on material from
his hook Beyond Software Architecture: Creating and Sustaining
Winning Solutions (Addison-Wesley, 2003). Contact him at
luke@lukehohmann.com.

Richard H. Thayer M California State University, Sacramento M thayer@csus.edu

GLOSSARY

SOFTWARE
ENGINEERING

Software configuration

management domain
(cont'd from inside
back cover)

program support librarian (PSL): See program librarian.

release: The formal notification and distribution of an approved
version of a hardware/software system. [IEEE Std. 828-
1998]

software change control: The process by which a software
change is proposed, evaluated, approved or rejected, sched-
uled, and tracked. [IEEE Std. 610.12-1990] See also config-
uration management, software configurafion control.

software component (SC): A functionally or logically distinct
part of a software configuration item, distinguished for the
purpose of convenience in designing and specifying a com-
plex SCl as an assembly of subordinate elements.

software configuration: 1. The arrangement of a computer sys-
tem or component as defined by the number, nature, and in-
terconnections of its constituent parts. 2. The functional and
physical characteristics of a software system as set forth in
technical documentation or achieved in a product. [IEEE Std.
610.12-1990]

software configuration auditing: The process of verifying that
all required hardware/software configuration items have
been produced, that the current version agrees with speci-
fied requirements, that the technical documentation com-
pletely and accurately describes the configuration items,
and that all change requests have been resolved. [IEEE
Std. 610.12-1990] See also software configuration
management.

software configuration control: The evaluation, coordination,
approval or disapproval, and implementation of changes to
configuration items after formal establishment of their con-
figuration identification. [IEEE Std. 610.12-1990] See also
software configuration management.

software configuration identification: 1. An element of config-
uration management consisting of selecting the configuration
items for a software system and recording their functional
and physical characteristics in technical documentation.
2. The current approved technical documentation for a soft-
ware configuration item as set forth in specifications, draw-
ings, associated lists, and documents referenced therein.
[IEEE Std. 610.12-1990] See also software configuration
management.

software configuration item (SCI): A software entity that has
been established as a configuration item. The SCI exists
where functional allocations have been made that clearly
distinguish equipment functions from software functions and
where the software has been established as a configurable
item. Contrast with hardware configuration item.

—Continued on p. 56

July/August 2003 1EEE SOFTWARE

53

