MA2002-2 Cálculo Avanzado y Aplicaciones.

Profesor: Juvenal Letelier.

Auxiliar: Roberto Gajardo Pizarro.

Auxiliar 2: Integral de trabajo y Teorema de Green.

25 de Marzo de 2019

P1. Sea el campo vectorial $\vec{F}(x,y) = (2x + y^2, 3y - 4x)$. Calcule la integral del trabajo

$$\int_{\Gamma} \vec{F} \cdot d\vec{r}$$

Donde Γ es la lenteja formada por las ecuaciones $x=y^2$ e $y=x^2$ (con $y\geq 0$) recorrida en sentido antihorario.

P2. Considere la curva Γ sobre el plano xy descrita por la siguiente ecuación en coordenadas polares:

$$\rho(\theta) = a(1 - \cos(\theta)) \; ; \; a > 0, \; \theta \in [0, 2\pi]$$

- a) Encuentre una parametrización para Γ y bosqueje esta curva.
- b) Calcule el trabajo efectuado por el campo vectorial

$$\vec{F}(x,y) = \left(2xy^2\cos(x^2y^2) + \frac{2x}{x^2 + y^2 + 1}, 2x^2y\cos(x^2y^2) + \frac{2y}{x^2 + y^2 + 1}\right)$$

al dar una vuelta completa a lo largo de la curva Γ en el sentido antihorario.

- **P3.** a) Bosqueje la superficie definida por $z^2 + x^2 = 4 + y^2$, $y \ge 0$. Note que para y fijo, la ecuación anterior representa una circunferencia.
 - b) Bosqueje la curva C obtenida al intersectar la superficie anterior con el cilindro de ecuación $x^2 + y^2 = 4$.
 - c) Calcule la circulación

$$\oint_C \vec{F} \cdot d\vec{r}$$

para el campo (en coordenadas cilíndricas)

$$\vec{F}(\rho, \theta, z) = (\rho \sin(\theta) + z)\hat{\rho} + \frac{z}{\rho} \sin(\theta)\hat{\theta} + (z^3 - \rho \cos(\theta))\hat{z}$$

P4. Considere la región que resulta al intersectar las funciones $f(x) = (x^2 - 4)(x^2 - 1)$ y $g(x) = 4 - x^2$. Sea D la frontera orientada en el sentido de las manecillas del reloj de esta región, y sea $\vec{F}(x,y) = (x^2y, -y^2)$ un campo vectorial. Calcule la integral de línea:

$$\oint_{\mathcal{D}} \vec{F} \cdot d\vec{r}$$

P5. Utilice el teorema de Green en el plano para calcular el área de la región encerrada por la hipocicloide $x^{2/3} + y^{2/3} = 4$. Indicación: Considere la curva plana parametrizada por $x = 8\cos^3(\theta)$ e $y = 8\sin^3(\theta)$, $\theta \in [0, 2\pi]$.