

MA2001-X Cálculo en Varias Variables Profesor: Matías Godoy Campbell

Auxiliares: Nicolás Cornejo, Cristian Palma y Arie Wortsman

Trabajo Dirigido 1

Preparación C1

P1 Encuentre (sin demostrarlo) adherencia, interior y frontera en \mathbb{R}^2 de los siguientes conjuntos:

$$A = \{(x, y) \in \mathbb{R}^2 : |y| < |x|, x^2 + y^2 \le 5\} \text{ y } B = \{(1/m, 1/n) : m, n \in \mathbb{N} \setminus 0\}$$

P2 Demuestre que el conjunto $S = \{y \in \mathbb{R}^n : ||y|| = 1\}$ es cerrado.

P3 Estudie la existencia de los siguientes límites:

$$a) \lim_{(x,y)\to(0,0)} \frac{x^5 - 2x^2y^3}{(x^2 + y^2)^2}$$

b)
$$\lim_{(x,y)\to(0,0)} \frac{\ln(x^4 - y^4 + 1)}{x^2 + y^2}$$

c)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^4}}$$

$$d) \lim_{(x,y)\to(\frac{\pi}{4},1)} tan(xy)^{\frac{1}{1-tan(xy)}}$$

P4 Sea $f: \mathbb{R}^2 \to \mathbb{R}$ la función definida por:

$$f(x,y) = \begin{cases} \frac{x^3 y^3}{(x^2 + y^2)^{\alpha}}, & \text{si } (x,y) \neq (0,0) \\ 0, & \text{si } (x,y) = (0,0) \end{cases}$$

a) Demuestre que para $\alpha < 3, f$ es continua en todo \mathbb{R}^2 .

Hint: Para demostrar la continuidad en 0, acotando adecuadamente |f(x,y)|, puede serle útil recordar que :

$$\forall a, b \in \mathbb{R}, 2 \, |ab| \le a^2 + b^2$$

- b) Muestre que para $\alpha \geq 3$, existe una sucesión $(x_n, y_n) \rightarrow (0, 0)$ tal que $f(x_n, y_n) \not\rightarrow (0, 0)$. ¿Qué puede decir de la continuidad en ese caso?
- c) Se define el conjunto $A = \{(x,y) \in \mathbb{R}^2 : x^3y^3 > x^2 + y^2\}$. Muestre que es abierto.

P5 Sea $\Omega \subseteq \mathbb{R}^n$ y $f: \Omega \to \mathbb{R}$. La siguiente propiedad que se le pide probar es otra caracterización de la diferenciabilidad para funciones escalares. Se pide lo siguiente:

Si $f:\Omega\to\mathbb{R}$ es diferenciable en $x_0\in\Omega$, demuestre que existe una función $G:\Omega\to\mathbb{R}^n$ continua en x_0 tal que:

$$f(x) - f(x_0) = \langle G(x), x - x_0 \rangle$$

Encuentre esa función G(x).

Hint: Recuerde que $f: \Omega \to \mathbb{R}$ es diferenciable en x_0 , si:

$$f(x_0 + h) = f(x_0) + \langle \nabla f, h \rangle + \epsilon(h)$$

P6 Considere la función:

$$\begin{cases} f(x,y) = \frac{\sin(x^3y^4)}{x^6 + y^2}, si(x,y) \neq (0,0) \\ 0, si(x,y) = (0,0)) \end{cases}$$

- a) Calcular, donde existan, las derivadas parciales de f en \mathbb{R}^2 .
- b) Es f diferenciable en \mathbb{R}^2 ?
- c) Es f de clase \mathcal{C} en \mathbb{R}^2 ?

P7 Para i=1,...,N, se define la *i*-ésima proyección de un vector $\vec{x}=(x_1,x_2,...,x_N)\in\mathbb{R}^n$ como $\pi_i(\vec{x})=x_i$.

- a) Prueba que la función $\pi_i:\mathbb{R}^n\to R$ es continua $\forall i\in 1..N$
- b) Deduzca que toda función polinomial $f: \mathbb{R}^n \to \mathbb{R}$ de la forma $f(\vec{x}) = x_1^{k_1} x_2^{k_2} ... x_N^{k_N}$ es continua, donde $k_1, ..., k_N \in \mathbb{N}$
- c) Concluya que todo polinomio en N variables p
 define una función continua de \mathbb{R}^n en \mathbb{R}