MA1102 Álgebra Lineal

Profesor: Alexander Frank Marambio Auxiliar: Kevin Pinochet Hernández

Auxiliar Preparación Exámen

4 de julio de 2019

P1. Para la matriz A dada por

$$\begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

Se le pide lo siguiente:

- a) Encuentre el conjunto solución S del sistema Ax = b donde $b = (1, 1, 1, 1, 1)^t$, y determine qué tipo de subespacio afín es.
- b) Encuentre una base del espacio $S_0 = \{x \in \mathbb{R}^5 : Ax = 0\}$ y determine su dimensión.
- c) Determine una base de S_0^{\perp} .
- d) Determine la veracidad de las siguientes afirmaciones:
 - 1) $b \in S_0 \cup S_0^{\perp}$.
 - 2) $b \in S_0 + S_0^{\perp}$.

P2. Sea $A \in \mathbb{R}^{m,n}$ con $m \ge n$.

- a) Demuestre que AA^t y A^tA son matrices simétricas.
- b) Demuestre que $Ker(A) = Ker(A^tA)$. Para ello considere la igualdad $x^tA^tAx = ||Ax||^2$.
- c) Demuestre que si el rango de A es n, entonces A^tA es invertible.

P3. Considere la siguiente matriz de $n \times n$ con coeficientes reales:

$$A = aI + uu^t$$

donde a es un número real, \mathbf{u} es un vector de norma 1, es decir $||\mathbf{u}||^2 = \mathbf{u}^t \mathbf{u} = 1$, e I la matriz identidad de $n \times n$.

- a) Muestre que A es simétrica.
- b) Pruebe que u es vector propio de A. y pruebe que el valor propio asociado es "a + 1".
- c) Para cada $v \neq 0$ ortogonal a **u**, es decir $\mathbf{u}^t v = 0$, pruebe que **v** es vector propio y calcule el valor propio asociado.
- d) De todos los valores propios de A y sus respectivas multiplicidades algebráticas y geométricas.
- e) Determine los valores de a, de manera que:
 - \blacksquare A es definida positiva.
 - \blacksquare A es invertible.
- **P4.** Considere la transformacion lineal $T: \mathbb{R}^{2,2} \longrightarrow \mathbb{R}^{2,2}$ dada por $[T]^{WW} = \begin{pmatrix} 4 & -4 & 1 & 1 \\ -1 & 2 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$, en una ba-

se
$$\mathcal{W} = \left\{ \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 1 & 0 \end{pmatrix} \right\}$$
, Encuentre explicitamente T en la base canonica $\mathcal{C} := \{E^{1,1}, E^{1,2}, E^{2,1}, E^{2,2}\}$.