MA1102 Álgebra Lineal

Profesor: Alexander Frank Marambio **Auxiliar:** Kevin Pinochet Hernández

Auxiliar 14

26 de junio de 2019

- **P1.** a) Sean $\{v_1, \ldots, v_n\}$ una base **ortogonal** de \mathbb{R}^n . Pruebe que si v es ortogonal a cada v_i , $i = 1, \ldots, n$ entonces: v = 0.
 - b) Sea $V = \left\langle \begin{pmatrix} 2\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\10 \end{pmatrix}, \begin{pmatrix} 2\\-3\\11 \end{pmatrix} \right\rangle$
 - 1) Encuentre una base de V^{\perp} .
 - 2) Supoga que ahora se extrae el último vector de V, calcule el complemento ortogonal del conjunto resultante.
- **P2.** Sea $A \in \mathbb{R}^{n,n}$ invertible. Considere una base ortonormal de vectores propios de AA^t . $\{v_1, v_2, ..., v_n\}$, asociado a valores propios no negativos $\alpha_1, \alpha_2, ..., \alpha_n$.
 - a) Demuestre que $\alpha_i > 0, \forall i \in \{1, ..., n\}.$
 - b) Sean $\sigma_i = \sqrt{\alpha_i}$, $i \in \{1,...,n\}$. Se definen los vectores $u_i = \frac{1}{\sigma_i} A^t v_i$, $i \in \{1,...,n\}$. Pruebe que cada u_i es vector propio de $A^t A$ de valor propio σ_i^2 y demuestre que $\{u_1, u_2, ..., u_n\}$ son ortonormales.
- **P3.** Escriba en forma $x^t A x$ las siguientes formas cuadráticas y determine en cada caso si la matriz asociada es (semi)definida positiva, (semi)definida negativa, o ninguna.

a)
$$q(x) = x_1(2x_1 - x_3) + x_2(3x_1 + x_2)$$

b)
$$q(x) = x_1^2 + x_2^2 - x_3^2 + x_1x_2 + x_1x_3$$

c)
$$q(x) = -2x_1^2 - \frac{1}{2}x_1x_2 + 5x_2^2$$

d)
$$q(x) = 2x_1^2 + x_2^2 + 2x_1x_2$$

- **P4.** Sea $A \in \mathbb{R}^{n,n}$.
 - a) Demuestre que A es simétrica y definida positiva ssi existe un B invertible tal que $A = B^t B$
 - b) Concluya que si A es simétrica y definida positiva entonces $\exists v_1,...,v_n \in \mathbb{R}^n$ tal que $a_{ij} = \langle v_i,v_j \rangle \forall i,j \in \{1,...,n\}$.