MA1102 Álgebra Lineal

Profesor: Alexander Frank Marambio **Auxiliar:** Kevin Pinochet Hernández

Auxiliar 1

20 de marzo de 2019

- **P1.** a) Sean A, B $\in K^{n,n}$ simétricas, demuestre que AB es simétrica, si solo si se cumple que AB = BA.
 - b) Una matriz $M \in K^{n,n}$ se llama idempotente si cumple que $M^2 = M$. Si se tienen las matrices $C, D \in K^{n,n}$, tales que C = CD y D = DC, demuestre que tanto C como D son idempotentes.
- **P2.** a) Sea $A \in \mathbb{R}^{n,n}$ invertible, tal que satisface la condición

$$A \cdot (A^2 + 3A + I) = 0$$

Pruebe que $A^{-1} = -A - 3I$.

- b) Demuestre que si A,B y $(A+B^{-1})$ son matrices invertibles, entonces $(A^{-1}+B)$ también es invertible y su inversa es $A(A+B^{-1})^{-1}B^{-1}$
- **P3.** Sea $A \in \mathbb{R}^{m,n}$ una matriz tal que A^tA es invertible. Se define la matriz $P \in \mathbb{R}^{m,m}$ como

$$P = I_{m,m} - A \cdot (A^t A)^{-1} \cdot A^t$$

donde I es la identidad de dimensión m. Demuestre que:

- a) $P^2=P$ y $P\cdot A=0_{m,m}$ donde $0_{m,m}$ es la matriz nula de dimensión m.
- b) Las matrices A^tA y P son simétricas.
- c) P no es invertible.