

Auxiliar 11: Estructuras algebraicas v2

- **P1.-** Demuestre que $(\mathbb{Z}_n, +_n, \cdot_n)$ es un anillo. Para ello se sugiere el siguiente camino.
 - i) Demuestre que $f: \mathbb{Z} \to \mathbb{Z}_n$ definida por $f(x) = [x]_n$ es un epimorfismo entre $(\mathbb{Z}, +)$ y $(\mathbb{Z}_n, +_n)$, y también entre (\mathbb{Z}, \cdot) y (\mathbb{Z}_n, \cdot_n) .
 - ii) Usando que $(\mathbb{Z}, +)$ es grupo abeliano (no lo demuestre) demuestre que $(\mathbb{Z}_n, +_n)$ es grupo abeliano.
 - iii) Demuestre que \cdot_n es asociativa.
 - iv) Demuestre que \cdot_n distribuye respecto $+_n$ y concluya que $(\mathbb{Z}_n, +_n, \cdot_n)$ es un anillo.
- **P2.-** Sea $f: (\mathbb{Z}_m, +_m) \to (\mathbb{Z}, +)$ un homomorfismo. Demuestre que f es la función constante igual a 0. **Hint:** Demuestre primero que $f([1]_m) = 0$ y usando eso demuestre que $f([x]_m) = 0, \forall [x]_m \in \mathbb{Z}_m$.
- **P3.-** Sea $G = \{x \in \mathbb{R} : x > 1\}$. Para $x, y \in G$ se define la l.c.i * por x * y = xy x y + 2.
 - i) Demuestre que (G,*) es un grupo abeliano.
 - ii) Demuestre que (G,*) es isomorfo a (\mathbb{R}^+,\cdot) .
- **P4.-** Sea (G,*) un grupo de cardinalidad finita y par (es decir, |G|=2k para algún $k \in \mathbb{N}$) con neutro $e \in G$. Demuestre que existe un $a \in G$ tal que $a \neq e$ y $a^{-1} = a$.
- **P5.-** (**Propuesto**) Sea (G, *) un grupo con elemento neutro e. Se define en $G \times G$ la ley de composición interna Δ como:

$$(a,b)\Delta(c,d) = (a*c,b*d), \forall (a,b), (c,d) \in G \times G$$

i) Demuestre que $(G \times G, \Delta)$ es grupo.

Para el resto de la pregunta considere (G, *) grupo abeliano.

ii) Considere la función

$$\varphi: G \times G \to G$$

$$(a,b) \to (a*b)^{-1}$$

Demuestre que φ es un homomorfismo de $(G \times G, \Delta)$ en (G, *).

iii) Demuestre que φ no es un isomorfismo.

RESUMEN

Definición 1 (L.C.I). Dado un conjunto no vacío llamamos **ley de compoición interna** en A a la función $*:A\times A\to A$ tal que

$$(x,y) \to x * y$$

Al par (A, *) lo llamamos estructura algebraica.

Sea (A, *) una estructura algebraica. Decimos que * :

- Es asociativa si: $x, y, z \in A, (x*y)*z = x*(y*z).$
- Tiene neutro si $\exists e \in A$ tal que, $\forall x \in A, x * e = e * x = x$.
- $x \in A$ tiene inverso si $\exists y \in A$ tal que x * y = y * x = e.
- es conmutativa si, $\forall x, y \in A, x * y = y * x$.
- Tiene un elemento **absorbente** si $\exists a \in A$ tal que $\forall x \in A, x * a = a * x = a$.
- Tiene un elemento **idempotente** si $\exists a \in A$ tal que a * a = a.

Proposición 1 (Unicidad neutro). Toda estructura algebraica posee solo un neutro.

Proposición 2 (Unicidad inverso). Para una estructura algebraica (A, *) con * asociativa, los inversos (en caso de existir) son únicos).

Definición 2 (Homomorfismo). Dadas dos estructuras algebraicas (A,*) y (B,Δ) , una función $f:A\to B$ homomorfismo de (A,*) en (B,Δ) si:

$$\forall x, y \in A, f(x * y) = f(x)\Delta f(y)$$

Observación 1. Si f es biyectiva, diremos que es un **isomorfismo**. Y además, f^{-1} es isomorfismo de $B \to A$.

Proposición 3. Si existe un **epimorfismo** f entre (A, *) y (B, Δ) , entonces se tiene que:

- Si(A,*) es asociativa, (B,Δ) también lo es.
- Si(A,*) conmuta, (B,Δ) también.
- Si e_A es neutro para (A,*), $f(e_A)$ es neutro para (B, Δ) . (Nota: En general, si $e_B \in f(A)$, entonces $e_B = f(e_A)$)

Definición 3. En el espacio de las funciones B^A se define la operación * tq $\forall f, g \in B^A$, $f * g = f(a) *_B g(a)$ con $a \in A$ y $*_B$ la operación de la estructura $(B, *_B)$.

Definición 4 (Grupo). Una estructura algebraica (G, *) diremos que es un **grupo** si:

- \bullet * es asociativa
- \blacksquare * admite neutro en G
- lacktriangle Todo elemento de G posee inverso en G según *.

Diremos que es **grupo abeliano** si * es conmutativa.