MA1101-2 y 7 Introducción al Álgebra

Profesor: Leonardo Sánchez, Daniel Quiroz B. **Auxiliar:** Marcelo Navarro, Gonzalo Alfaro,

Camila Fernández, Fernanda Macías.

Trabajo dirigido: Control Recuperativo

20 de Mayo de 2019

1. Inducción y Sumatoria

P1. C3-2009 Se define por recurrencia la colección de reales $\{a_n\}_{n\in\mathbb{N}}$ de la siguiente forma:

$$a_1 = 2$$

$$a_{n+1} = \frac{12}{1+a_n}, \forall n \ge 1$$

Demuestre por inducción que:

i)
$$a_{2n-1} < a_{2n+1}, \forall n \ge 1$$

ii)
$$a_{2n} > 3, \forall n \ge 1$$

P2. C3-2013 Demuestre que

$$(\forall n \in \mathbb{N} \cup \{0\}) \ 5^{2n} + (-1)^{n+1}$$

es divisible por 13.

P3. C3-2014 Sea la secuencia definida por

$$a_1 = 1, a_{n+1} = a_n + \frac{1}{n+1}$$

Pruebe, usando inducción, que $\forall n \geq 1$

$$\sum_{i=1}^{n} a_i = (n+1)a_n - n$$

P4. EX-2018/2 Considere la sucesión definida por recurrencia de la siguiente manera: $a_1=1, a_2=8$ y $a_n=a_{n-1}+2a_{n-2}$ para $n\leq 3$. Demuestre que $a_n=3\cdot 2^{n-1}+2(-1)^n$ para todo $n\in\mathbb{N}$.

P5. CR-2011 Demuestre usando inducción que

$$\forall n\in\mathbb{N}, n\geq 1, \frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{2n+1}\leq \frac{5}{6}$$

P6. EX-2014 Determine a_n si se cumple que

$$\sum_{k=1}^{n} a_k = \frac{1}{3}(n^2 + 5n)$$

P7. Ex-2009 Calcule
$$\sum_{k=1}^{n} (k+1) ln\left(\frac{k}{k+1}\right)$$

2. Conjuntos

P8. C1-2010

- (a) Sean A, B conjuntos no vacios relativos a un universo \mathcal{U} . Demuestre que $A\subseteq B\Longleftrightarrow B^C\subseteq A^C$.
- (b) Para A, B, C conjuntos no vacios relativos a \mathcal{U} demuestre que $[(A \cap B) \subseteq C] \Longrightarrow [(A \cap C^C) \subseteq B^C]$

P9. C1-2018-2

- (a) Demuestre que nunca se cumple $\mathcal{P}(A \setminus B) \subseteq (\mathcal{P}(A) \setminus \mathcal{P}(B))$
- (b) Demuestre que no siempre se cumple que $\mathcal{P}(A) \setminus \mathcal{P}(B) \subseteq \mathcal{P}(A \setminus B)$

P10. C1-2008

(a) Sea A un subconjunto fijo del conjunto universo \mathcal{U} . Probar que $\forall X,Y\subseteq\mathcal{U}$ se tiene que

$$(X \cup A = Y \cup A) \land (X \cap A = Y \cap A) \Longrightarrow X = Y$$

(b) Sea $A \subseteq \mathcal{U}, A \neq \emptyset$. Se define $\mathcal{F}_A \subseteq \mathcal{P}(\mathcal{U})$ por

$$X \in \mathcal{F}_A \ ssi \ X \subseteq \mathcal{U} \land X \cap A \neq \emptyset.$$

Demuestre que dado $B \subseteq \mathcal{U}$

- 1. $\mathcal{U} \in \mathcal{F}_A \land A \in \mathcal{F}_A$
- 2. Si $A \setminus B \neq \emptyset \Rightarrow B^C \in \mathcal{F}_A$
- 3. Si $B \in \mathcal{F}_A \wedge C \subseteq \mathcal{U} \Rightarrow (B \cup C) \in \mathcal{F}_A$

3. Funciones

P11. C2-2017 Sea E un conjunto de referencia no vacío y $B_0 \subseteq E$ fijo. Considere la función

$$\mathcal{F}: \quad \mathcal{P}(E) \longrightarrow \qquad \mathcal{P}(E) \times \mathcal{P}(E)$$

$$X \longrightarrow \qquad \mathcal{F}(X) = (X \backslash B_0, X \cap B_0)$$

- (a) Demuestre que $X = (X \setminus B_0) \cup (X \cap B_0)$
- (b) Demuestre que la funcion \mathcal{F} es inyectiva. Indicación: Puede ser útil utilizar la parte (a).
- (c) Demuestre que la función \mathcal{F} NO es epiyectiva.

P12. [P2 Control 1, Año 2016- β]

- a) Sea $R: X \to X$ tal que R(X) = X y $R \circ R = R$. Demuestre que $R = Id_X$.
- b) Sea $S: X \to X$ sobreyectiva tal que $S \circ S \circ S = S$. Demuestre que S es invertible y calcule su inversa. Hint: Puede usar el resultado de la parte anterior para una función apropiada.

P13. C2-2012 Sean A, B, C, D conjuntos no vacíos tales que $A \cap B = \emptyset$ y $B \cap D = \emptyset$ y sean $f : A \to B$ y $g : C \to D$ dos funciones. Se define $h : A \cup C \to B \cup D$ tal que, $\forall x \in A \cup C$

$$h(x) = \begin{cases} f(x) & si \quad x \in A \\ g(x) & si \quad x \in C \end{cases}$$

- (i) Demuestre que si f, g son inyectivas, entonces h es inyectiva.
- (ii) Demuestre que si f, g son epiyectivas, entonces h es epiyectiva.
- (iii) Demuestre que si f,g son biyectivas, entonces h es biyectiva y encuentre su inversa. Justifique su respuesta.
- **P14.** C3-2019 Sea $f:A\longrightarrow B$ una función. Un conjunto $C\subseteq A$ se dice estable para f si

$$f^{-1}(f(C)) = C.$$

- (i) Demuestre que si C y D son estables para f, entonces $C \cup D$ también lo es.
- (ii) Demuestre que para todo $C \subseteq A$, el conjunto $D = f^{-1}(f(C))$ es estable para f.

4. Relaciones

P15. C3-2009 Sea E un conjunto y $A \neq \emptyset$ un conjunto fijo de E. Se define en $\mathcal{P}(E)$ la relación \mathcal{R} por

$$X\mathcal{R}Y \iff A\backslash X = A\backslash Y.$$

- (i) Demuestre que \mathcal{R} es una relación de equivalencia.
- (ii) Demuestre que el conjunto cociente

$$\mathcal{P}(E)/\mathcal{R} = \{ [X]_{\mathcal{R}} | X \in \mathcal{P}(A) \}.$$

P16. C2-2018/2 En $\mathbb{R}^2 = \{(x,y) : x,y \in \mathbb{R}\}$ se define la relación \leq por

$$(u,v) \trianglelefteq (u',v')$$
 ssi $u \leq u'$ y $u+v \leq u'+v'$

Demuestre que ≤ es una relación de orden.Indique si es un orden total o parcial.

P17. CR-2016 Se define en $\mathbb{Z} \times \mathbb{Z} \setminus \{0\}$ la relación R dada por

$$(x,y)R(z,t) \iff xt = zy$$

- (a) Demuestre que R es una relación de equivalencia y describa explícitamente las clases $[(0,1)]_R$ y $[(3,3)]_R$.
- (b) Sea $f: \mathbb{Z} \times \mathbb{Z} \setminus \{0\} \longrightarrow \mathbb{Q}$ definida por $f(x,y) = \frac{x}{y}$. Demuestre que

$$(x,y)R(z,t) \Longleftrightarrow f(x,y) = f(z,t)$$

(c) Demuestre que la función $F: \mathbb{Z} \times \mathbb{Z} \setminus \{0\}/R \longrightarrow \mathbb{Q}$ (desde el conjunto cociente en \mathbb{Q}) dada por $F([x,y]_R) = f(x,y)$ es biyectiva.