Control 3

- **P1.** a) (2,0 pts.) Sea (a_n) una sucesión convergente a un real ℓ . Pruebe, usando la definición, que las sucesiones (u_n) y (v_n) dadas por $u_n = a_{n+1}$ y $v_n = a_n^2$ convergen a ℓ y ℓ^2 respectivamente.
 - b) Dado $a \in [0,1[$ considere la sucesión (u_n) dada por la recurrencia:

$$u_0 = a$$
, $u_{n+1} = 2u_n - u_n^2$

- ı. (1,0 pts.) Demuestre usando inducción que $\forall n \geq 0: u_n \leq 1.$
- II. (1,0 pts.) Demuestre usando inducción que $\forall n \geq 0: u_n > 0$.
- III. (1,0 pts.) Demuestre que (u_n) es creciente.
- IV. (1,0 pts.) Deduzca que (u_n) es convergente y usando la parte a), determine el límite de la sucesión.
- **P2.** a) (4,0 pts.) Calcule los siguientes límites:

I.
$$\lim_{n \to \infty} \frac{(-1)^{3n} + \operatorname{sen}(\tan(n^3) + e^{n\pi})}{\sqrt{n} + \cos(n^{100})}$$

III.
$$\lim_{n \to \infty} \left(\frac{2 + n^2}{n^2} \right)^{(n+1)^2}$$

II.
$$\lim_{n \to \infty} n \left(1 - \frac{n+1}{2n-1} \right)^n$$

IV.
$$\lim_{n \to \infty} \frac{\left(1 - \frac{n+1}{2n-1}\right)^n}{e^{1/n} - 1}$$

- b) (2,0 pts.) Muestre que para $n \ge 1$ se cumple $\frac{3}{n+2} \le \frac{3n}{n^2+n+1} \le \frac{3}{n}$, y calcule el límite de la sucesión definida por $a_n = \left(\frac{n^2+4n+1}{n^2+n+1}\right)^n$.
- **P3.** a) (2,0 pts.) Considere la función $g: \mathbb{R} \to \mathbb{R}$ definida por

$$g(x) = \begin{cases} 0 & \text{si } x \in \mathbb{Q} \\ 1 & \text{si } x \in \mathbb{I} \end{cases}.$$

Pruebe, usando la definición de límite de funciones, que $\lim_{x\to 0} g(x)$ no existe

- b) (2,0 pts.) Considere la función $h: \mathbb{R} \to \mathbb{R}$ definida por $h(x) = \left\lfloor \frac{3}{1+x} \right\rfloor$. Usando la definición de límite de funciones, pruebe que $\lim_{x\to 1} h(x) = 1$
 - [Indicación: Si $a_n \to 1$, pruebe que existe n_0 tal que $\forall n \ge n_0$ se tiene $a_n \in]3/4, 5/4[$. Luego analice $h(a_n)$.]
- c) (2,0 pts.) Considere un entero $k \ge 1$. Aplicando las desigualdades usuales del logaritmo natural a la expresión $\ln \left(\sqrt[k]{x} \right)$, concluya que

$$k - \frac{k}{\sqrt[k]{x}} \le \ln x \le k \sqrt[k]{x} - k.$$

Usando esto, calcule $\lim_{x\to 1} \frac{\ln x}{\sqrt[k]{x}-1}$.