Resumen

Definición (Módulo). Sea $x \in \mathbb{R}$, llamaremos módulo de x al real definido por:

$$|x| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0 \end{cases}$$

Proposición 1. Se tienen las siquientes propiedades:

(i) $\forall x \in \mathbb{R}|x| \ge 0$

- (ii) $|x| = 0 \Leftrightarrow x = 0$
- $(iii) \ \forall x, y \in \mathbb{R}, \ |xy| = |x| \cdot |y|$
- $(iv) |x| \le a \Leftrightarrow -a \le x \le a$
- (v) $|x| \ge a \Leftrightarrow x \le -a \lor x \ge a$
- $(vi) \ \forall x, y \in \mathbb{R}, |x+y| < |x| + |y|$

Definición (Lugar geométrico). Es el conjunto de puntos que satisfacen una condición dada

Definición (Raíz cuadrada). Sea x un real no negativo, definimos su raíz cuadrada como aquel número t, tal que $t^2 = x$ y lo denotamos como $\sqrt{x} = t$.

Observación. Por el momento asumiremos la existencia y unicidad de la raíz cuadrada para cada real no negativo, pues nos faltan herramientas para demostrar esto uwu

Definición (Distancia entre puntos). Dados dos puntos $P_1 = (x_1, y_1)$ y $P_2 = (x_2, y_2)$, entonces la distancia entre P_1 y P_2 estará dada por:

$$d(P_1, P_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Definición (Circunferencia). Definimos la circunferencia \mathcal{C} de centro $A = (x_0, y_0)$ y radio r como el lugar geométrico de todos los puntos tales que su distancia a A es exactamente r, es decir:

$$C = \{(x, y) \in \mathbb{R}^2 : d(A, (x, y)) = r\}$$

Usando la fórmula para distancia, obtenemos que:

$$\mathcal{C} = \{(x, y) \in \mathbb{R}^2 : (x - x_0)^2 + (y - y_0)^2 = r^2\}$$

Definición (Ecuación general de la recta).

$$\mathcal{L}: ax + by + c = 0$$

Definición (Pendiente de una recta). Sea un recta \mathcal{L} no vertical, con dos puntos $(x_1, y_1), (x_2, y_2)$ distintos en ella, definimos la pendiente de \mathcal{L} como el real $m = \frac{y_2 - y_1}{x_2 - x_1}$

Definición (Ecuación de la recta, punto pendiente).

$$\mathcal{L}: (y - y_0) = m(x - x_0)$$

Definición (Ecuación de la recta dados dos puntos).

$$\mathcal{L}: (y - y_1) = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$$

Definición (Ecuación principal de la recta).

$$\mathcal{L}: y = mx + n$$

Definición (Simetral). Dados dos puntos P,Q distintos, definimos la simetral como la recta:

$$\mathcal{L}: d(P,(x,y)) = d(Q,(x,y))$$

Definición (Paralelismo). Dos rectas L y L' son paralelas ssi L=L' o bien $L\cap L'=\emptyset$

Definición (Perpendicularidad). Dos rectas L y L' son perpendiculares ssi para todo par de puntos distintos $P, Q \in L$, la simetral entre P y Q es paralela a L'