Propuestos

P1. Encuentre los valores $\lambda \in \mathbb{R}$, tales que: $\lambda x^2 + 4x + \lambda > 3$, $\forall x \in \mathbb{R}$

Recuerdos y Consejos

Parábola

1 drubbid					
	Vertical		Horizontal		
Ecuación	$y - y_0 = \frac{1}{4p}(x - x_0)^2$		$x - x_0 = \frac{1}{4p}(y - y_0)^2$		
Vértice	(x_0, y_0)		(x_0, y_0)		
Foco	$(x_0, y_0 + p)$		$(x_0 + p, y_0)$		
Directriz	$y = y_0 - p$		$x = x_0 - p$		
Sentido de las ramas	Arriba si $p > 0$	Abajo si $p < 0$	Derecha si $p > 0$	Izquierda si $p < 0$	
Forma					

Elípse

	Horizontal	Vertical	
Ecuación	$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1$	$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1$	
Centro	(x_0, y_0)	(x_0, y_0)	
Semiejes	a > b > 0	b > a > 0	
Excentricidad	$e = \frac{\sqrt{a^2 - b^2}}{a}$	$e = \frac{\sqrt{b^2 - a^2}}{b}$	
Focos	$(x_0 \pm a \cdot e, y_0)$	$(x_0, y_0 \pm b \cdot e)$	
Directrices	$x = x_0 \pm \frac{a}{e}$	$y = y_0 \pm \frac{b}{e}$	
Forma			