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1 Introduction

This section will start with some basic facts and exercisesquent users of this discipline can just
skim over the notation and take a look at formulas that takualgeneralities in which the theorems
will be shown.

The reason for starting with basic principles is the intemtio show that the theory is simple
enough to be completely derived on 20 pages without usinghayh¢level mathematics. If you take
a look at the first theorem and compare it with some scary ialdgalready mentioned in the table
of contents, you will see how huge is the path that we will geidn so few pages. And that will
happen on a level accessible to a beginning high-schooéstudVell, maybe | exaggerated in the
previous sentence, but the beginning high-school studemtld read the previous sentence again
and forget about this one.

Theorem 1. If x is a real number, then®> 0. The equality holds if and only if¢ 0.

No proofs will be omitted in this text. Except for this one. Wave to acknowledge that this
is very important inequality, everything relies on it, but the proof is so easy that it makes more
sense wasting the space and time talking about its triyilitan actually proving it. Do you know
how to prove it? Hint: "A friend of my friend is my friend”; "Arenemy of my enemy is my friend”.

It might be useful to notice that "An enemy of my friend is myeemy” and "A friend of my enemy
is my enemy”, but the last two facts are not that useful forjprg theorenfl.

| should also write about the difference betweeri ’and ">"; that something weird happens
when both sides of an inequality are multiplied by a negatimber, but | can’t imagine myself
doing that. People would hate me for real.



2 Olympiad Training Materials. www.imomath.com

Theorem 2. If a,b € R then:
a?+b? > 2ab. (1)
The equality holds if and only if & b.

Proof. After subtracting abfrom both sides the inequality becomes equivalerate b)2 > 0,
which is true according to theordrh .

Problem 1. Prove the inequality &+ b? 4 ¢ > ab+ bc+ ca, if a b, ¢ are real numbers.

Solution. If we add the inequalities? + b? > 2ab, b? + ¢ > 2bc, andc? 4 a2 > 2ca we get
2a® + 2b? + 2¢? > 2ab+ 2bc+ 2ca, which is equivalent to what we are asked to prote.

Problem 2. Find all real numbers ab, ¢, and d such that
a’+b?+c?+d?>=a(b+c+d).
Solution. Recall thatx® +y? > 2xy, where the equality holds if and onlysif=y. Applying this
inequality to the pairs of numbe(a/2,b), (a/2,c), and(a/2,d) yields:
2 2

2
a a a

Z 1p’>ab, —+c?>ac —+d?>ad
4+ > ab, 4+ > ac, 4+ =

Note also thag?/4 > 0. Adding these four inequalities gives a5+ b? 4+ ¢? +d? > a(b+c+d).
Equality can hold only if all the inequalities were equalitji.e.a®=0,a/2=b,a/2=c, a/2=d.
Hencea=b = c=d = 0 is the only solution of the given equatiof.

Problem 3. If a, b, c are positive real numbers that satisf§-ab?+ c? = 1, find the minimal value
of

a’b’ b’c? %@

St T

Solution. If we apply the inequality? +y? > 2xy to the numbers = %3 andy = bg we get

a’h?  b?c?

2
2 + 2 > 2b°. (2)
Similarly we get
2 2.2
ba(j v % > 2¢2, and 3)
c?a?  a’b?
=t 2 2a%. ()

Summing uplR),[3), andi4) gives(ZLizbE + %SE + %"5‘3) >2(a®+b?+c?) =2, henceS> 1. The

. . .ab bc ca . 1
equality holds if and only |t% =25 ie.a=b=c= % A
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Problem 4. If x and y are two positive numbers less thamprove that

1 n 1 S 2
1-x2 1-y2~1-xy

-2
V(1-x3)(1-y?)
that(1—x?)(1—y?) = 14 x2y? — x> —y? < 14+ x%y? — 2xy= (1—xy)? which implies

. Now we notice

2 >
(1-x3)(1-y?) —

Solution. Using the inequalitp+b > 2v/abwe get: L, + ﬁz >

%xy and this completes the proaoh

Since the main focus of this text is to present some more ag¢hmaterial, the remaining
problems will be harder then the ones already solved. Fa@etiadio want more of the introductory-
type problems, there is a real hope that this website wilhgpet some text of that sort. However,
nobody should give up from reading the rest, things arerggttéry interesting.

Let us return to the inequalitfl(1) and study some of its galimations. Fom,b > 0, the con-
sequencé’é—b > /ab of () is called the Arithmetic-Geometric mean inequalitg left-hand side
is called the arithmetic mean of the numbai@ndb, and its right-hand side is called the geometric
mean ofa andb. This inequality has its analogue:

at+b+c
3

More generally, for a sequengeg, ..., x, of positive real numbers, the Arithmetic-Geometric mean
inequality holds:

> v/abg a,b,c> 0.

X1+ Xp+ -+ Xn
n

> YR . (5)

These two inequalities are highly non-trivial, and them\ariety of proofs to them. We difil(5) for
n= 2. If you try to prove it forn = 3, you would see the real trouble. What a person tortured with
the caser = 3 would never suspect is that= 4 is much easier to handle. It has to do something with
4 being equal 22 and 3# 2- 2. | believe you are not satisfied by the previous explandiigryou
have to accept that the case- 3 comes after the case= 4. The induction argument follows these
lines, but (un)fortunately we won't do it here because thethad doesn’t allow generalizations that
we need.

Besides[(b) we have the inequality between quadratic atfthagtic mean, namely

x§+x§+~~~+xﬁ>x1+xz+---+xn (©)
n - n '

The case of equality id5) anfl(6) occurs if and only if all thenbers«,, . .., x, are equal.
Arithmetic, geometric, and quadratic means are not the m@gns that we will consider. There
are infinitely many of them, and there are infinitely many in@dies that generaliz€l(5) arld (6). The
beautiful thing is that we will consider all of them at oncer Rppropriately defined means, a very
general inequality will hold, and the above two inequaditiéll ended up just being consequences.

Definition 1. Given a sequence x%,...,X, of positive real numbers, the mean of order r, denoted
by M (x) is defined as

1
XX+ xE\T
Mr(x) = ( : 2 n n) . (7)
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Example 1. M1(x,...,%n) is the arithmetic mean, while My, . .., xn) is the geometric mean of the
numbersx,...,Xn.

Mo can’t be defined using the expressibh (7) but we will showr litat asr approaches Qyi;
will approach the geometric mean. The famous mean ineguit be now stated as

'\/lr()(]_,...,Xn)S'\/ls(x:l_?...,Xn)7 fOI‘OSI’SS
However we will treat this in slightly greater generality.

Definition 2. Let m= (my,...,my) be a fixed sequence of non-negative real numbers such that
my +mp+---+my, = 1. Then the weighted mean of order r of the sequence of poséale x=
(X1,...,Xn) is defined as:

==

MM (X) = (XyMy + XoMmp + -+ - + XMy T . (8)

Remark. Sequencen is sometimes called a sequence of masses, but more oftenaliésl a
measure, ani™(x) is theL" norm with repsect to the Lebesgue integral definechbydidn’t want
to scare anybody. | just wanted to emphasize that this hareltmath and not something coming
from physics.

We will prove later that as tends to O, the weighted medh™(x) will tend to the weighted
geometric mean of the sequencdefined byG™(x) = X;™ - x5? - - - XITh.

Example 2. Ifmp=mp=--- = % then M"(x) = M, (x) where M(x) is previously defined by the
equation[[F).

Theorem 3 (General Mean Inequality)lf x = (xg,...,%n) iS a sequence of positive real numbers
and m= (my,...,my) another sequence of positive real numbers satisfying m- + m, = 1, then
for 0 <r < s we have M(x) < MJI'(x).

The proof will follow from the Holders inequality.

2 Convex Funtions

To prove some of the fundamental results we will need to usgeaty of certain functions. Proofs
of the theorems of Young, Minkowski, and Holder will requiius to use very basic facts — you
should be fine if you just read the definitibh 3 and exariple 3wéier, the section on Karamata's
inequality will require some deeper knowledge which you fiad here.

Definition 3. The function f: [a,b] — R is convex if for any x X2 € [a,b] and anyA € (0,1) the
following inequality holds:

fAxe+ (1= A)x) <AT(xa) +(1—A)f(x). ©)

Function is called concave if f is convex. If the inequality ift9) is strict then the fuodtis called
strictly convex.
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Now we will give a geometrical interpretation
of convexity. Take anys € (x1,X2). There is
A €(0,1) such that; = Axg + (1 — A)xs. Let’s
paint in green the line passing through and
parallel to they axis. Let’s paint in red the chord
connecting the point&, f (X)) and(Xo, f(x2)).
Assume that the green line and the red chord in- f(x1)
tersect at the yellow point. Thecoordinate (also
called the height) of the yellow point is: o % X
|

Af(x)+ (1 —=2A)f(x2).

The inequality[[P) means exactly that the the green lineint#érsect the graph of a function below
the red chord. Iff is strictly convex then the equality can hold [ih (9) if andyifilx; = xo.

|
|
|
3 f(xb)
|

Example 3. The following functions are convexX,exP (for p > 1, x > 0), )—1( (x # 0), while the
functionslogx (x> 0), sinx (0 < x < 1), cox (—11/2 < x < 11/2) are concave.

All functions mentioned in the previous example are elemsrfunctions, and proving the con-
vexity/concavity for them would require us to go to the veagies of their foundation, and we will
not do that. In many of the examples and problems respectivetibns are slight modifications of
elementary functions. Their convexity (or concavity) isr&thing we don’t have to verify. How-
ever, we will develop some criteria for verifying the conitg>of more complex combinations of
functions.

Let us take another look at our picture above and comparddpessof the three drawn lines.
The line connectingxi, f(x1)) with (X3, f(x3)) has the smallest slope, while the line connecting
(x3, f(X3)) with (xp, f(x2)) has the largest slope. In the following theorem we will stid prove
that the convex function has always an "increasing slope”.

Theorem 4. Let f: [a,b] — R be a convex function and€.x; < x3 < X2 <b. Then

fixa) —f(xa) _ f0R)— ) _ fOo)—fl)

< < (20)
X3—X1 X2 —X1 X2 —X3

Xo—X3

X and

Proof. We can writexs = AX; + (1 — A)xz for someA € (0,1). More preciselyA =
1-A =22 From[3) we get

Xp—X1 *

X2 — X3 X3 — X1
f <= =f f(x2).
(X3) < — (x1) + — (X2)
Subtractingf(x1) from both sides of the last inequality yieldgxs) — f(x1) = 252 f(x1) +
% f(x2) giving immediately the first inequality of{)L0). The secondquality of [ID) is obtained
in an analogous wayn
The rest of this chapter is using some of the properties afdirnontinuity and differentiability.
If you are not familiar with basic calculus, you may skip thatt, and you will be able to understand
most of what follows. The theorelh 6 is the tool for verifyirtgtconvexity for differentiable func-

tions that we mentioned before. The theofédm 5 will be usedthé proof of Karamata's inequality.

Theorem 5. If f : (a,b) — R is a convex function, then f is continuous and at every pointx b)
it has both left and right derivative’ fx) and f_(x). Both f_ and f, are increasing functions on
(a,b)and f (x) < f ().
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Solution. The theoreniZllI0 implies that for fixedthe functiong (t) = w t £xis an
increasing function bounded both by below and above. Moeeigely, iftp andt; are any two
numbers fron(a, b) such thaty < x < t; we have:

f(x) — f(to)

X—1o

)~ F()

1 —X

<o) <

This specially means that there aredimp_ ¢(t) and lim_x; ¢(t). The first one is precisely the
left, and the second one — the right derivativepoét x. Since the existence of both left and right
derivatives implies the continuity, the statement is ptbve

Theorem 6. If f : (a,b) — R is a twice differentiable function. Then f is convex(arb) if and
only if f”(x) > O for every xe (a,b). Moreover, if f'(x) > Othen f is strictly convex.

Proof. This theorem is the immediate consequence of the previoeigon

3 Inequalities of Minkowski and Holder

Inequalities presented here are sometimes called weighegdialities of Minkowski, Holder, and
Cauchy-Schwartz. The standard inequalities are easiiredd by placingny = 1 whenever some
m appears in the text below. Assuming that the supt--- + m, = 1 one easily get the gener-
alized (weighted) mean inequalities, and additional aggiomm; = 1/n gives the standard mean
inequalities.

Lemmal. Ifx,y >0, p> landa € (0,1) are real numbers, then
(x+Y)P<at PP (1- )t AyP. (11)
The equality holds if and only # = 5.

Proof. For p > 1, the functiong (x) = xP is strictly convex hencéaa+ (1— a)b)P < aaP +
(1— a)bP. The equality holds if and only i = b. Settingx = aa andy = (1— a)b we get [T1)
immediately.0
Lemma 2. If X1,X2,...,Xn,¥Y1,Y2,..., Yo @nd m,np, ..., m, are three sequences of positive real num-
bersand p> 1, a € (0,1), then

n

_Z(Xi +i)Pm < alpixipm +(1- a)lpiyipm. (12)

The equality holds if and onlyﬁl = 195 foreveryi,1<i<n.

Proof. From [I1) we getx +yi)P < al=PxP + (1 — a)~Py’. Multiplying by m and adding as
1 <i < nwe get[IR). The equality holds if and onlyaf: s O

Theorem 7 (Minkowski). If X1, X2, ..., Xn, Y1, Y2, ---,¥n, @and m, mp, ..., m, are three sequences of
positive real numbers andp 1, then

(é(x.w. "m)l (Zl& m) + (éy?m)l/p. (13)

The equality holds if and only if the sequen(e$ and(y;) are proportional, i.e. if and only if there
is a constanfA such thatx= Ay, for1 <i <n.
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Proof. For anya € (0,1) we have inequality{l12). Let us write

In new terminology[[IR) reads as

n

Zx|+y| )Pm < a'"PAP 4+ (1— )t PBP. (14)

If we choosea such thatf = -, then [T1) impliesr~PAP + (1 — a)1~PBP = (A+B)P and [1#)

now becomes
n n 1/p n 1/p
.Z(Xi +yi)Pm = [(ZXPM) + (nym) ]

which is equivalent td{13)o
Problem 5(SL70). Ifug,...,uUn,V1,...,Vy are real numbers, prove that

1+iu.+v. < <1+zl ><1+21v2>

When does equality hold?

p

Solution. Let us seta = 1/ u2 andb = v2 By Minkowski’s inequality (forp = 2)
we havezI (Ui +v)? a+b . Hence the LHS of the desired inequality is not greater than

1+ (a+b)?, while the RHS is equal to(4 +a?)(1+b?)/3. Now it is sufficient to prove that
3+3(a+b)? < 4(1+a?)(1+b?).

The last inequality can be reduced to the triviat §a— b)? + (2ab— 1)2. The equality in the initial
inequality holds if and only ifs /v; = c for somece Randa=b=1/v2. A
Theorem 8(Young). Ifa,b>0and pq> 1satisfy: + & = 1, then

p ]
ab<%+%. (15)

Equality holds if and only if B= bA.

Proof. Since¢(x) = € is a convex function we have O $€+ 3. The equality

holds if and only ifx =y, and the inequality{15) is immediately obtained by placing €/P and
b = €//9. The equality holds if and only &P = bd. O

Lemma 3. If X1,X2,...,Xn, Y1, Y2, --,Yn, My, My, ..., My are three sequences of positive real numbers
and pq> 1such that% + % =1, anda >0, then

ianxmrn < %.ap l;X, m+ o a aq ny' (16)

P
The equality holds if and only ﬁ% for1<i<n.

qaq
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Proof. From [I5) we immediately gegy; = (ax)% < %-apxier é - Loy Multiplying by my

. . . . . a Xip y.q .
and adding as=1,2,...,nwe get[IB). The inequality holds if and only#;— = Gad forl1<i<n.
O

Theorem 9 (Holder). If X1,%2,...,%n,Y1,Y2,---,Yn, M, My, ..., M, are three sequences of positive
real numbers and g > 1 such that% + %1 =1, then

n n e /oy 1/q
Xiyim < Pm ) Yyim ) . (17)

2 (Zﬁ ) (Z )

The equality holds if and only if the sequen(:;q%) and (yﬁ) are proportional.

Proof. The idea is very similar to the one used in the proof of Minkkikgsinequality. The
inequality [I®) holds for any positive constant Let

n 1/p 1 n /g
A=[aP§ x’m , B=[ =5 y'm )
( i; | ) (aq iZ\ '

By Young's inequality we have thatAP + B = AB if AP = BY. EquivalentlyaP sl ,x’'m =
a—lq zi”:lyiqm. Choosing such ao we get

n 1 1 n e /oy 1/q
xyim < =AP+ =BY=AB= xm : yim .0
i; "~ p q i; ! i; '

Problem 6. If ai,...,a, and m,...,m, are two sequences of positive numbers such thiat &

-+ +anMy = a and gmy + -+ aimy = B2, prove that,/army + -+ + /@M > 3

Solution. We will apply Holder’s inequality o = a1-1/3, Yi=4q

:n- < C 1/2 2/3, C 2 1/3: C , 2/3_ 2/3
a _;am, _;a m _;&m .;\/a_m B,

Hencey [, /am > %/2 A

Proof of the theorem[3. M{" = (J{L, X -m;)
p= 7, andg= ;% Then we get

n 5 /n p/(1-p)
MM < XPom | - 19. m =Ms. O
f (Z ' 2, :

Problem 7. (SL98) Let x, y, and z be positive real numbers such thatxy.zProve that

x3 ye z
1y (1+2  A+20+%  T+9d1y)

' We will use the Holders inequality fof = 1,

3
> —.
— 4
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Solution. The given inequality is equivalent to
3
Cx+1) +y3(y+ 1) +B(z+1) > Z(l+x+y+ Z+ XY+ YZ+ZX+ Xy2).

The left-hand side can be written ¥+ y* + 2 + x3 + y3 + 22 = 3MJ + 3M3. Usingxy+yz+ zx<
X2 +y2 + 22 = 3MZ we see that the right-hand side is less than or equai2e+ 3M; + 3M2). Since
M; > 33¥Xyz= 1, we can further say that the right-hand side of the requireguality is less than or
equal to%(5M1+3M§). SinceMy > M3, andM; < M, < Mg, the following inequality would imply
the required statement:

3M3 +3m3 > §(5M3 +3M32).

However the last inequality is equivalent s — 1)(4M3 + 8M3z +5) > 0 which is true because
M3 > 1. The equality holds if and only KE=y=z=1. A

Theorem 10(Weighted Cauchy-Schwartzlf x;, y; are real numbers, andnpositive real numbers,

then
._ixiyim < \/ ._ixizm : \/ _iy?m. (18)

Proof. After noticing thaty " ; xiyim < 1, x| -|yi|m, the restis just a special cage£ q=2)
of the Holder's inequalitym

Problem 8. If a, b, and ¢ are positive numbers, prove that
a b c_ (a+b+c)?

S>> -
b+c+a_ ab+bc+ca

Solution. We will apply the Cauchy-Schwartz inequality with = /¢, X2 = \/E X3 = \/g
y1 = vab, y» = vbc, andys = ,/ca Then

a+b+c = xyy1+Xoys+Xay3 < \/x§+x§+x§-\/y§+y§+y§

= g+g+§~\/ab+bc+ca

Theorem 11. If ay, ..., a, are positive real numbers, then

lim My (aa, ..., an) = a* - a5® - ",

Proof. This theorem is given here for completeness. It states #ata0 the mean of order
approaches the geometric mean of the sequence. Its prad¥@ssome elementary calculus, and
the reader can omit the proof.

Mr (a-17 e 7a'n) = eFl Iog(a&'ml++a1[]nh>.

Using the L'Hospitale’s theorem we get

1 . maloga; + - - -+ myaylogan
lim =log(aymy +---+a = lim —2
r—or g8y + -+ ayfmh) r—0 ajmy +---+ahmy
= mloga; +---+myloga,
log (af™---af").

The result immediately followsa
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4 Inequalities of Schur and Muirhead

Definition 4. LetS!F(ay,...,an) be the sum oflnsummands which are obtained from the function
F(as,...,an) making all permutations of the array).

We will consider the special cases of the fundfipi.e. whenF(ay,...,a,) = aj*-----a,
a; > 0.

If (a) is an array of exponents afiday, ..., an) = ajt----- agn we willuseT[ay, ..., o] instead
of Y!F(a,...,an), if it is clear what is the sequenca).

Example 4. T[1,0,...,0] = (n—1)! - (a1 +a+---+an), and T3, 1 ... Y =nl. ya;—a, The
AM-GM inequality is now expressed as:

TLO,....0>T Fﬂ
n n

Theorem 12(Schur) For a € R andf3 > 0 the following inequality holds:
Tla+2B,0,01+Tla,B,B] > 2T[a + 3,,0]. (19)
Proof. Let (x,y,2) be the sequence of positive reals for which we are pro¥inly (18ing some
elementary algebra we get
ST[a+26,0,0/+5T(a.6,6] - Tla +5.5,0
= XY =)+ y (Y )P - 2) + (8 ) —P).

Without loss of generality we may assume tlat y >z Then in the last expression only the
second summand may be negativex I$ 0 then the sum of the first two summand$i$ because
XTB —yP) (6B —2P) > X0 (B —yP)(YP —2) > y* (X —yP)(yP — 2P ) = —y7 (P —yP)(yF — 2P).
Similarly for a < 0 the sum of the last two termsis0. O

Example 5. If we seta = 3 = 1, we get
4 yP + 2+ 3xyz> X2y + XY + Y22+ yZ + X+ 22,

Definition 5. We say that the arraga) majorizes array(a’), and we write that in the following way
(a’) < (a), if we can arrange the elements of arrays) and (a’) in such a way that the following
three conditions are satisfied:

Loaj+oy+ 0y =01+0z+ - +0n;

201> 03> > apion>02> > o,

3. a1+ ay+--+a, <oap+ax+---+ay, forall 1< v <n.
Clearly, (a) < (a).

Theorem 13 (Muirhead) The necessairy and sufficient condition for comparabilityl o] and
T[a’], for all positive arrays(a), is that one of the array$a) and (a’) majorizes the other. If
(a’) < (a) then

Tla'] < Tla].

Equality holds if and only ifa) and (a’) are identical, or when all & are equal.
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Proof. First, we prove the necessity of the condition. Setting #latlements of the arrag are
equal tox, we get that
X2 af < X2 0i

This can be satisfied for both large and smalbnly if the condition 1 from the definition is satisfied.
Now we puta; = ---,a, = x anday;1 = --- = a, = 1. Comparing the highest powers »fin
expressiond [a] andT[a’], knowing that for sufficiently large we must havel [a’] < T[a], we
conclude thatry +---+a;, < ap+---+ay.

Now we will proof the sufficiency of the condition. The statemwill follow from the following
two lemmas. We will define one linear operatioon the set of the exponen(ts). Suppose thaty
anda; are two different exponents 6fr) such that, > a;. We can write

ak=p+T1, oy=p—T1 (0<T<p).
If 0 <o < 1< p,define the arraya’) = L(a) in the following way:

_ _ I+0 -0
al;_p—’_o—_ TgTO'(Jk—'_T<2|:I'O'CJI7
al/:p_U:Tak‘i‘Tala
a, =ay, (v#Kkv#I).

The definition of this mapping doesn't require that some @ #énrays(a) and (a’) is in non-
decreasing order.

Lemma 4. If (a’) =L(a), then Tla’] < T[a], and equality holds if and only if all the elements of
(a) are equal.

Proof. We may rearrange the elements of the sequence suckthati | = 2. Then we have
Tla]—T[a]
= Sl (T e e e e~ e ™)
= Yl@aa)P Tag*---ap(ait? —a; %) (a7 —a; %) > 0.
Eaquality holds if and only i§;s are equala

Lemma 5. If (a’) < (a), but(a’) and (a) are different, ther{a’) can be obtained fronia) by
succesive application of the transformation L.

Proof. Denote bym the number of differences, — a;, that are£ 0. mis a positive integer and
we will prove that we can apply operatidnin such a way that after each of applications, number
m decreases (this would imply that the procedure will end uerdinite number of steps). Since
Y (ay — ay,) = 0, and not all of differences are 0, there are positive anatiegdifferences, but the
first one is positive. We can find sukrandl! for which:

/ / !/ !/
o < Ok, Ogpq=0kt1,..., 01 =01-1, 0 >Qp.

(a1 — af is the first negative difference, angl — ay, is the last positive difference before this negative
one). Letay = p+ 1 anda; = p — 1, definec by

o =max{|ay—p,|af —p[}.
At least one of the following two equalities is satisfied:

!/ !
al—p=-0, qx—p=o0,
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becausey, > a/. We also haver < 1, becauser, < axi o] > q. Let
al=p+0o, a'=p—0, a)=a, (Vv#kV#I).

Now instead of the sequen¢e) we will consider the sequen¢e”). Numberm has decreased by
atleast 1. Itis easy to prove that the sequeiac® is increasing and majorizés’). Repeating this
procedure, we will get the sequen@g) which completes the proof of the second lemma, and hence
the Muirhead’s theorent O

Example 6. AM-GM is now the consequence of the Muirhead’s inequality.
Problem 9. Prove that for positive numberslaand c the following equality holds:

1 1 1 1
<.
a3+b3+achr b3+c3+abc+c3+a3+abc* abc

Solution. After multiplying both left and right-hand side of the recgd inequality withabg a3+
b3+ abc) (b®+ 3+ abc) (c3 + a3 + abc) we get that the original inequality is equivalent to

3T(4,4,1)+2T[5,2,2| + 3T[7,1,1] + 3T(3,3,3) <
<1T(3,3,3+7[6,3,0/+3T[4,4,1] + 1T(7,1,1] + T[5,2,2|

which is true because Muirhead’s theorem imply thég, 2,2] <T16,3,0]. A
More problems with solutions using Muirhead’s inequalignde found in the section "Prob-
lems”.

5 Inequalities of Jensen and Karamata

Theorem 14(Jensen’s Inequality)If f is convex function ands, ..., a, sequence of real numbers
suchthato; +- - -+ ap = 1, than for any sequence x. . , X, of real numbers, the following inequality
holds:

floxa+ -+ anXn) < a1f (1) +---+ anf(Xn).

Remarklf f is concave, theffi(aixg+ -+ anXn) > a1 f(X1) + -+ anf (Xn).

Example 7. Using Jensen’s inequality prove the generalized mean iald@gui.e. that for every
two sequences of positive real numbess x ,x, and m,...,m, such that m+ ---+m, = 1 the
following inequality holds:

Xy + MpXp + -+ MoXn > X - X2 - X0

Theorem 15(Karamata'’s inequalities)Let f be a convex function and X. ., Xn, Y1,Y2,-- -, Yn tWO
non-increasing sequences of real numbers. If one of thewilly two conditions is satisfied:

@) (y) < ();

(b)) x>y, X1 +X2 > y1+Yo, Xt +X2+X3 > Y1+ Yo +Y3, ..., Xo+ -+ X1 > Y1+ +Yn-1,
X1+ +X > Y1+ -+ Yy and f is increasing;

then

3 100> 5 1) (20)
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Proof. Letc = % fory; # X, andc; = f/ (%), for x; = y;i. Sincef is convex, and, y;
are decreasing sequencgss non-increasing (because is represents the "slopé&arf the interval
betweerx; andy;). We now have

n n

_;f(xi)__;f(yi) = |ZLCIX| Vi) Ziclxl ZLCIyI

= Z(c—c.+1)(x1+ -+ X)

i=
n
- Z(Ci —Cirr) (Yt Vi), (21)
i=
here we define,,1 to be 0. Now, denotindy = X3 +---+X andB; =y; +--- +y; ) can be
rearranged to
n—-1

Zlf Xi) Zif yi) = Zi(c i —Ci+1) (A —Bi) +Cn- (An—Bn).

The sum on the right-hand side of the last inequality is negative becausg is decreasing and
A; > B;. The last terncy (A, — Byp) is zero under the assumption (a). Under the assumption (b) we
have that, > 0 (f is increasing) ané, > By and this implies[[20)0

Problem10.Ifa; >a,>--- >a,and b > b, > --- > b, are two sequences of positive real numbers
which satisfy the following conditions:

ay > by, atap > b1y, ajazaz > bibobz, -+ > ajas---an > by - - b,

prove that
atay+-+an=br+by+---+bn

Solution. Leta; = €9 andb; = €. We easily verify that the conditions (b) of the Karamata’s
theorem are satisfied. Thg$ ;&% > 3! ; € and the result inmediately follows\

Problem 11. If X4,...,% € [—71/6, 71/6], prove that
€O 2x1 — X2) + COY 2%y — X3) + - - + COY2Xn — X1) < COSXy + - - - + COKp.

Solution. Rearrang&2x; — Xp,2Xp — X3,..., 2%, — X1) and (Xg,...,Xa) in two non-increasing
sequenceXm, — Xm;+1, 2Xm, — Xmp+1s - - - » 2Xmy — Xmy+1) and(Xe, , Xk, , - - -, Xk, ) (here we assume that
Xn+1 = X1. We will verify that condition (a) of the Karamata’s ineqimalis satisfied. This follows
from

(g — Xmy+1+ -+ 2Xmy — Xm+1) — (X + -+ %)
> (g = K1+ D= R 1) — Ky -+ %)
= (X + %) = Kgr1+- - +Xg 1) > 0.

The functionf (x) = — cosxis convex o— /2, 11/2] hence Karamata’s inequality holds and we get
—COg2X1 — X2) — -+ + — COY 2% — X1) > —COSXy — - - — COSXp,

which is obviously equivalent to the required inequality.
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6 Chebyshev’s inequalities

Theorem 16 (Chebyshev’s inequalities)et &g > a, > --- > ayand bp > by > --- > b, be real

numbers. Then
n n n n
ny ab > g b | >nY abpi1-i. (22)
A PATIPAS RS

The two inequalities become equalities at the same time ehere, =--- =a,orby=by=--- =
bn.

The Chebyshev’s inequality will follow from the followingegeralization (placingn = % for
the left part, and the right inequality follows by applyirgetleft ona; andc; = —by1-).

Theorem 17(Generalized Chebyshev's Inequalitf)et ey > a, > --- > a,andb > by > --- > by
be any real numbers, andim. ., m, non-negative real numbers whose surth.i§hen

iiaibim > (I: am) (ibim) (23)

The inequality become an equality if and onlyjf-aa, =--- =a,orby=by =--- =b,.
Proof. From(a; — a;j)(bj — bj) > 0 we get:

> (& —aj)(bi —bj)mm; > 0. (24)
]

Since(yL;aim)- (YL, bim) = 5 j aibjmm;, @4) implies that

0 < ;aibimmj —za;bjmmj —%ajbimjm+§ajbjmmj

[saom (am) (5am)]

Problem 12. Prove that the sum of distances of the orthocenter from thessdf an acute triangle
is less than or equal t8r, where the r is the inradius.

Solution. Denotea = BC, b = CA, c = AB and letSagc denote the area of the triangdC. Let
da, dg, dc be the distances fromd to BC, CA, AB, andA/, B/, C' the feet of perpendiculars from
A, B, C. Then we haved, + bd, + cd: = 2(SgcH + SacH + Sasn) = 2P. On the other hand if we
assume tha > b > ¢, it is easy to prove thata > dg > dc. Indeeda > b impliesZA > ZB hence
/HCB < ZHCA andHB’' < HA'. The Chebyshev’s inequality implies

1
(8+b+0)r = 2P = ada+ bt + Cck > = (a+b+0)(dat 0+ o). &

7 Problems
1. Ifa,b,c,d > 0, prove that

aerJchrd>2
b+c c¢c+d d+a a+b™
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2. Prove that
ad b3 c? a+b+c
2 5+ 15 5+ 5 2 J
ac+ab+b¢ bc+bc+cé cé+cata 3

fora,b,c > 0.

3. Ifa,b,c,d,e f > 0, prove that

ab N cd N ef <(a+c+e)(b+d+f)
a+b c+d e+f~ a+b+c+d+e+f-

4. Ifa,b,c> 1, prove that
va—1+vb—-1++vc—1<+/c(ab+1).

5. Letas,ay,...,an,b1,by, ... by be positive real numbers. Prove that

(z00) = (z0) (z20)

1 1 1
6. If L+ vtz = 1forx,y,z> 0, prove that
(x—1)(y—1)(z-1)>8.
7. Leta,b,c > 0 satisfyabc= 1. Prove that

1 1 1
4 + > V2.
Vot (Joerdi+i yJari+l

8. Given positive numberg b, c,x,y,z such thab+x=b+y=c+z= S, prove thatay+ bz+
cx< S

9. Leta,b,c be positive real numbers. Prove the inequality

a? p2 2 4(a—b)?
—+t—+_->atbtct+t——-.
b ¢ a at+b+c

10. Determine the maximal real numizefor which the inequality
X G + X5 + X5+ X6 > a(X1Xa + X2X3 + X3Xa + XaXs)
holds for any five real numbexs, X2, X3, X4, Xs.

11. Ifx,y,z> 0 andx+y+z=1, prove that

7
0 < Xy+Yyz+ zx— 2xyz< 57

12. Leta,b andc be positive real numbers such tladitc= 1. Prove that

1 n 1 n 1
ad(b+c) bic+a) c3(a+b)

3
> -
-2
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13. Ifa,bandc are positive real numbers, prove that:

ad N b3 N c3 ab+bc+ca
b2—bc+c?2 c2—cat+a? a2—ab+b%2™ a+b+c

14. (IMOOQ5) Letx,y andz be positive real numbers such txgz> 1. Prove that

x> — X2 Yo —y? N 2-7 -
Iy 2 PrAIR By

15. Letay,...,ay be positive real numbers. Prove that

3 3 3

a
_1+%+...+%2a§+a%+...+aﬁ.
a ag ar

16. Letay,...,a, be positive real numbers. Prove that

(1+a))(1+ap)-- (1+an) < (1+:—§)-(1+:—%) ----- <1+%2>.

3

17. Ifa,b, andc are the lengths of the sides of a trianglés semiperimeter, ang> 1 an integer,

prove that
an " c" 2\"2
>(Z 1
b+c+c+a+a+b* (3)

18. LetO< X1 <xp <--- <X, (n>2)and

1
Tt 1rx 1t

Prove that

¢E+¢@+m+¢%>m—m<jé+jé -+J%)

19. Suppose that any two members of certain society arer dittedsor enemies Suppose that
there is total on members, that there is total gfpairs of friends, and that in any set of
three persons there are two who are enemies to each othee thed there exists at least one

member among whose enemies we can find at moél — ;“'—g) pairs of friends.

20. Given a set of unit circles in the plane whose total aréa Brove that among those circles
there exist certain number of non-intersecting circles setotal area i %S

8 Solutions

1. Denote byl the left-hand side of the required inequality. If we add thstfand the third
summand of. we get
a c a?+c?+ad+hbe
brc dta (bro(atd)
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We will bound the denominator of the last fraction using thequalityxy < (x+y)?/4 for
appropriatex andy. Forx = b+ c andy = a+d we get(b+c)(a+d) < (a+b+c+d)2/4.
The equality holds if and only &+ d = b+ c. Therefore

a ¢ a’+c?+ad+bc
b+c d+a~ (a+b+c+d)?

4b2+d2+ab+cd
a+b = 7 (atb+ct+d)?
a b c d
bJchr c+d+d+aJr a+b
4a2+b2+02+d2+ad+bc+ab+cd
(a+b+c+d)?
a?+b?+c2+d?+ (a+c)(b+d)
[(a+c)+ (b+d)]?

In order to solve the problem it is now enough to prove that

a?+b%+c2+d?+ (a+c)(b+d)
(@ro)+ (bt d)P =1 (25)

After multiplying both sides ofl{5) bi/(a+ ¢)+ (b+d)]? = (a+c)?+ (b+d)? it becomes
equivalent to 2a2 + b% + c2 +d?) > (a+c)2+ (b+d)2 = a + b? + ¢+ d2 + 2ac+ 2bd. It

is easy to see that the last inequality holds because many &ill cancel and the remaining
inequality is the consequencea&f+ ¢ > 2ac andb? + d2 > 2bc. The equality holds if and
onlyif a=candb=d.

Similarly -2 at (with the equality if and only i+ b= c+ d) implying

2. We first notice that
as— b3 N b3 —¢3 N c-ad
a?+ab+b? b2+bc+c? c2+cata?

Hence it is enough to prove that

a3+b? N b3+ c3 N c+al 2(a+b+c)

a®+ab+b?> b?+bc+c? c?+cat+a? 3 '

However since @ — ab+ b%) > a? +ab+b?,
a®+bd a?—ab+b?> _a+b
2 > = (a+b)— 2=
a‘+ab+Db az+ab+ b 3

The equality holds if and onlyii=b =rc.
Second solutiorFirst we prove that

ad 2a—b
>
a2 +ab+b? 3

(26)

Indeed after multiplying we get that the inequality is equént toa® + b® > ab(a+ b), or
(a+b)(a—b)2 > 0 which is true. After addind{26) with two similar inequégis we get the
result.
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3. We will first prove that

ab N cd <(a+c)(b+d)
a+b c+d~ a+b+c+d’

(27)

As is the case with many similar inequalities, a first looKZat)(suggests to multiply out both
sides by(a+ b)(c+d)(a+b+c+d). That looks scary. But we will do that now. In fact you
will do, I will not. I will just encourage you and give moral gport (try to imagine me doing
that). After you multiply out everything (do it twice, to makure you don’t make a mistake in
calculation), the result will be rewarding. Many things calout and what remains is to verify
the inequality 4bcd < a?d? 4- b?c? which is true because it is equivalent ta<0(ad — bc)?.
The equality holds if and only &d = bc, or § = 3.

Applying (Z1) with the number8 =a-+c¢,B=b+d,C = ¢ andD = f yields:
(a+c)(b+d) ef < (A+C)(B+D) (a+c+e)(b+d+f)

at+b+c+d e+f~ A+B+C+D a+b+c+d+et+f’

and the required inequality is proved becalis& (27) can biéedpp the first term of the left-
hand side. The equality holds if and onlydif= § = £.

4. To prove the required inequality we will use the similapagach as in the previous problem.
First we prove that

Va—1++vb—1< Vab. (28)
Squaring both sides gives us that the original inequaliggisivalent to
at+b—2+2\/(a—1)(b—1)<ab
< 2¢/(a-1)(b-1)<ab—-a-b+2=(a—-1)(b—1)+1. (29)

The inequality[(2B) is true because it is of the faxm 1 > 2, /x for x = (a—1)(b—1).
Now we will apply [Z8) on number& = ab+ 1 andB = c to get

Vab++vc—1=vA—-1++vB—1<VAB=,/(ab+1)c.

The first term of the left-hand side is greater than or equafae- 1+ /b — 1 which proves
the statement. The equality holds if and onlyaf- 1)(b— 1) = 1 andab(c— 1) = 1.

5. Letusdenote =3 a.q= 3 bi.k=3"a1 =3, bf, andm=3{; abi. The fol-
lowing equalities are easy to verify:

;a;bj:pq—m,;a;aj:pz—k, and;bibj:qz—l,
iZ] iZ] i7]

so the required inequality is equivalent to
(pg—m)2 > (P> —k)(q? — 1) < Ip? — 2gm- p+mP+ g*k — kI > 0.

Consider the last expression as a quadratic equatipniia. ¢ (p) = Ip? —2gm- p+g°k — kl.
If we prove that its discriminant is less than or equal to Oaneedone. That condition can be
written as:

o?m? —I(m? 4+ g’k —kl) <0< (Ik—m?)(g? —1) > 0.
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The last inequality is true becausé—| = ¥ bib; > 0 (bj are positive), andk — n? >
0 (Cauchy-Schwartz inequality). The equality holds if amdydf Ik —m? = 0, i.e. if the
sequence&) and(b) are proportional.

6. Thisis an example of a problem where we have some conditior y, andz. Since there are
many reciprocals in those conditions it is natural to divideh sides of the original inequality
by xyz Then it becomes

D)

However 1 I = I 41 and similar relations hold for the other two terms of the-fedind side

of @0). Hence the original inequality is now equivalent to

<1 1) (1 1) <1 1) 8
_+_ . __|__ . +
y z zZ X Xy Xyz

and this follows from} + >2-L : 141>2-2L1 andi+1>2-L. The equality holds if

andonly ifx=y=2z=3.

ek Nz

7. Notice that

1 11 1 11
SHb+Z+5>2 2<b+ +2>

This inequality is strict for any two positive numbexsindb. Using the similar inequalities
for the other two denominators on the left-hand side of tigeired inequality we get:

1 1 1
+ +
¢b+§+% ¢c+%+% ¢a+%+%

1 1 1
> V2 + + : 31
<1+§+b 1+¢+c 1+%+a> (1)
: H i _ a _ a _

The last expression il {B1) can be transformed Uﬁ% = Trarab = 1717a an d1+5+C

. Thus

1 _ c
G@biatl)  Iiiia

1 1 1
V2 + +
1+i+4b 1+f+c 1+i+a
1+1 c+a
SN AR |
1+i+a
The equality can never hold.

8. DenoteT = S/2. One of the triplega,b,c) and (x,y,z) has the property that at least two
of its members are greater than or equal'toAssume thafa,b,c) is the one, and choose
a=a-T,B=b-T,andy=c—T. Wethenhavx=T —a,y=T — 3, andz=T —y.
Now the required inequality is equivalent to

(T+a)(T=B)+ (T+B)NT—y)+(T+y)(T—a) <4T2
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11.
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After simplifying we get that what we need to prove is
—(aB+By+ya)<T2 (32)

We also know that at most one of the number{3, y is negative. If all are positive, there is
nothing to prove. Assume that< 0. Now [32) can be rewritten asap — y(a + ) < T2.
Since—y < T we have that-a —y(a + ) < —a +T(a +B) and the last term is less than
T since(T —a)(T - ) > 0.

a—b)?

. Starting from(T — & _2a+band similar equalitites fofb — ¢)?/c and(c — a)?/awe get

the required inequality is equivalent to

(a+bto) <(a_bb)2 + (b_ac)z + (C_ba)2> > 4(a—b)2. (33)

By the Cauchy-Schwartz inequality we have that the leftehside of [3B) is greater than or
equal to(ja— b| +|b—c| + |c—a])% @3) now follows fromb—c| +|c—a| > |a—b|.

Note that
Xe 4 X5 + X5+ X5 + %&
2 2 2 2 2 2
_ (i 2. % X3, 2% X2
— <x1+ 3>+< 2+ 2>+<2+ 2 )+<3+x5).
Now applying the inequalitg? + b? > 2abwe get

2 2 2 2 2 2
X1+X2+X3+X4+X5Z%(X1X2+X2X3+X3X4+X4X5)~

This proves thaa > % In order to prove the other inequality it is sufficient to icetthat for

(X1,X2,X3,%4,%5) = (1,4/3,2,1/3,1) we have

2 2 2 2 2 2
X1+X2+X3+X4+X5:%(X1X2+X2X3+X3X4+X4X5)-

Sincexy+ yz+ zx— 2xyz= (X+y+ 2)(Xy+ yz+zX) — 2xyz=T[2,1,0] + %T [1,1,1] the left
part of the inequality follows immediately. In order to peothe other part notice that

7 7 s 7 (1
2—7_2—7(x+y+z) —2—7(ET[3,0,0]+3T[2,1,0}+T[l,l,l]).

After multiplying both sides by 54 and cancel as many thingpassible we get that the
required inequality is equivalent to:

12T[2,1,0] < 7T[3,0,0] +5T[1,1,1].
This inequality is true because it follows by adding up thegjmalities 2'[2,1,0] < 2T[3,0,0]

and 10r[2,1,0] <5T([3,0,0]+5T[1,1,1] (the first one is a consequence of the Muirhead’s and
the second one of the Schur’s theoremdoe 3 = 1).
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12.

13.

14.

The expressions have to be homogenous in order to appMtiirhead’s theorem. First we
divide both left and right-hand side t(ﬁbc)é = 1 and after that we multiply both sides by
a®03c3(a+ b)(b+c)(c+a)(abc)?. The inequality becomes equivalent to

16 13 7 16 16 4 13 13 10

- = _ - _ =" > .
37 373:| T[s? 373:| |:37 37 3:| —3T[57473]+T[47474}
The last inequality follows by adding the following threeialihare immediate consequences
of the Muirhead'’s theorem:

dl

1. 217 [ 8 11>27[54,3],

2. T[22 4]>T75473],

3 TR EY>T[444
The equality holds if and only i=b=c = 1.

The left-hand side can be easily transformed ﬁéé%;i) + b;ffa?) + ngij;? . We now multiply

both sides bya+ b+ c)(a®+ b%)(b® + c®)(c® + a®). After some algebra the left-hand side
becomes

L= T[9,2,0]+T[10,1,0]+T[9,1,1] + T[5,3,3] + 2T[4,4,3]
+T[6,5,0]+ 2T[6,4,1] + T[6,3,2] + T[7,4,0] + T[7,3,1],

while the right-hand side transforms into
D=3(T[4,4,3]+T[7,4,0+T[6,4,1] + T[7,3,1)).
According to Muirhead’s theorem we have:
1. T[9,2,01>T[7,4,0],
2. T[10,1,01 >T[7,4,0],
3. TI[6,50 >TI6,4,1],
4. T[6,3,2]>T[4,4,3].

The Schur’s inequality gives UB[4,2,2] + T[8,0,0] > 2T[6,2,0]. After multiplying by abg
we get:
5. T[53,3/+T[9,1,1] >T[7,3,1].

Addingup 12,3,4, 5, and adding®[4,4,3]+ T[7,4,0] + 2T[6,4,1] + T[7,3,1] to both sides
we getL > D. The equality holds if and only #i=b = c.

Multiplying the both sides with the common denominaterget
Ts55+4T750+ T522+ To00 > Tss2+ Teo0+2T540+ 2Ta20+ T222.

By Schur’s and Muirhead’s inequalities we have thago + Ts22 > 2T720 > 2T711. Since
xyz> 1 we have thaly 11 > Tg 0. Therefore

To.00+ Ts22 > 2Te0,0 > Te,00+ Ta2,0-

Moreover, Muirhead’s inequality combined wiyz> 1 gives usT7s50 > Ts52, 2750 >
2Te51 > 21540, T750 > Tea2 > Ta20, @andTs 55 > To2 2. Adding these four inequalities to
(1) yields the desired result.
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15. Leta = €% and let(my,...,m,), (ki,...,ks) be two permutations ofl, ..., n) for which
the sequenceSXm — Xmy+1, - - -, 3Xmy, — Xmy+1) and (2x,, ..., 2X,) are non-increasing. As
above we assume thaf, 1 = x,. Similarly as in the problefi11 from the sectldn 5 we prove
that(2x) < (3Xm —Xm+1). The functionf (x) = € is convex so the Karamata’s implies the
required result.

16. Hint: Choose; such thaty = €4. Sort the sequencé®x) — o, ...,2Xy — x1) and(Xq, ..., Xn)
in non-increasing order, prove that the first majorizes #eoad, and apply Karamata’s in-
equality with the convex functiofi(x) = 1+ €*.

17. Applying the Chebyshev’s inequality first we get

a" N b" n c" >a”+b"+c” 1 N 1 n 1
b+c c+a a+b™ 3 a+b b+c c+a/’

The Cauchy-Schwartz inequality gives:

1 1 1
2 >
(a+b+c) (a+bJr b+c+c+a) 29,

and the inequalitil, > M, gives

a"+b"+c" - (a+b+c)“

3

In summary

a”+b”+c“ - <a+b+c>n<l+ l+ 1)
b+c c+a a+b — 3 a+b b+c c+a
1
3

v

18. Itis enough to prove that
VX1 + = + (VX + 1
YUK 2 VX2

o) ) (e

or equivalently

<1+X1+ +1+Xn)< 1 n 1 - l)
VX1 N 1+x1 1+4% 1+Xn
> n <i+i+ - )
N VX X2 V¥
Consider the functiorf (x) = /x+ %( = %,x € (0,+). Itis easy to verify thaf is non-

N
decreasing ofi, +«) and thatf (x) = f ()—1() for everyx > 0. Furthermore from the given
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19.

20.

Hence

condltlons it follows that onlyk; can be less than 1 and thiaj— <1-
Xo > Z Now it is clear that (in both of the cases> 1 andx; < 1):

l+X1 1+X1

fxg)=f (X—11> < f(x) < < ().

n
This means that the sequenééﬁkﬂ)kil is non-decreasing. Thus according to the Cheby-
shev’s inequality we have: -

(1—|—X1+ +1+Xn)< 1 N 1 . 1)
VXL VXn 1+x  14x 14X,

el )

. . el 1+xg _ 1+
The equality holds if and only i == 1+Xn or Tl = \/i", which implies that
X1 =Xp = --- = Xn. Thus the equality holds if and onlyXf = --- = x, =n—1.

Denote bySthe set of all members of the society, Ayhe set of all pairs of friends, and by
the set of all pairs of enemies. For every S, denote byf (x) number of friends ok and by
F (x) number of pairs of friends among enemiexolt is easy to prove:

a=IA= 53 19
f fb))=7§ 2
{%EA( (@) + f(b)) ng (X)

If aandb are friends, then the number of their common enemies is ¢équal- 2) — (f(a) —
1)—(f(b)—1)=n- f(a)— f(b). Thus

1 1

1
RSP0 3 (-f@-fb) a0 5 10

Using the inequality between arithmetic and quadratic nueratine last expression, we get

and the statement of the problem follows immediately.

Consider the partition of plarreinto regular hexagons, each having inradius 2. Fix one of
these hexagons, denoted ayFor any other hexagonin the partition, there exists a unique
translationty taking it ontoy. Define the mapping : m— y as follows: IfA belongs to the
interior of a hexagom, theng (A) = 1«(A) (if Ais on the border of some hexagon, it does not
actually matter where its image is).

The total area of the images of the union of the given circtpsatsS, while the area of the
. . . . S . .
hexagony is 8/3. Thus there exists a poiBtof y that is covered at least— times, i.e.,

8V3
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. S . :
such thatp —1(B) consists of at Ieasztg—3 distinct points of the plane that belong to some of

the circles. For any of these points, take a circle that ¢ogia All these circles are disjoint,
. mn
with total area not less thar—S > 2S/9.

83
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