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Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1
2 Convex Funtions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
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1 Introduction

This section will start with some basic facts and exercises.Frequent users of this discipline can just
skim over the notation and take a look at formulas that talk about generalities in which the theorems
will be shown.

The reason for starting with basic principles is the intention to show that the theory is simple
enough to be completely derived on 20 pages without using anyhigh-level mathematics. If you take
a look at the first theorem and compare it with some scary inequality already mentioned in the table
of contents, you will see how huge is the path that we will bridge in so few pages. And that will
happen on a level accessible to a beginning high-school student. Well, maybe I exaggerated in the
previous sentence, but the beginning high-school student should read the previous sentence again
and forget about this one.

Theorem 1. If x is a real number, then x2 ≥ 0. The equality holds if and only if x= 0.

No proofs will be omitted in this text. Except for this one. Wehave to acknowledge that this
is very important inequality, everything relies on it, ...,but the proof is so easy that it makes more
sense wasting the space and time talking about its triviality than actually proving it. Do you know
how to prove it? Hint: ”A friend of my friend is my friend”; ”Anenemy of my enemy is my friend”.
It might be useful to notice that ”An enemy of my friend is my enemy” and ”A friend of my enemy
is my enemy”, but the last two facts are not that useful for proving theorem 1.

I should also write about the difference between ”≥” and ”>”; that something weird happens
when both sides of an inequality are multiplied by a negativenumber, but I can’t imagine myself
doing that. People would hate me for real.
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Theorem 2. If a,b∈ R then:

a2 +b2 ≥ 2ab. (1)

The equality holds if and only if a= b.

Proof. After subtracting 2ab from both sides the inequality becomes equivalent to(a−b)2 ≥ 0,
which is true according to theorem 1.2

Problem 1. Prove the inequality a2 +b2+c2 ≥ ab+bc+ca, if a,b,c are real numbers.

Solution. If we add the inequalitiesa2 + b2 ≥ 2ab, b2 + c2 ≥ 2bc, andc2 + a2 ≥ 2ca we get
2a2 +2b2+2c2 ≥ 2ab+2bc+2ca, which is equivalent to what we are asked to prove.△

Problem 2. Find all real numbers a,b,c, and d such that

a2 +b2+c2+d2 = a(b+c+d).

Solution. Recall thatx2 +y2 ≥ 2xy, where the equality holds if and only ifx = y. Applying this
inequality to the pairs of numbers(a/2,b), (a/2,c), and(a/2,d) yields:

a2

4
+b2 ≥ ab,

a2

4
+c2 ≥ ac,

a2

4
+d2 ≥ ad.

Note also thata2/4 > 0. Adding these four inequalities gives usa2 + b2 + c2 + d2 ≥ a(b+ c+ d).
Equality can hold only if all the inequalities were equalities, i.e.a2 = 0, a/2 = b, a/2 = c, a/2 = d.
Hencea = b = c = d = 0 is the only solution of the given equation.△

Problem 3. If a,b,c are positive real numbers that satisfy a2 +b2 +c2 = 1, find the minimal value
of

S=
a2b2

c2 +
b2c2

a2 +
c2a2

b2 .

Solution. If we apply the inequalityx2 +y2 ≥ 2xy to the numbersx =
ab
c

andy =
bc
a

we get

a2b2

c2 +
b2c2

a2 ≥ 2b2. (2)

Similarly we get

b2c2

a2 +
c2a2

b2 ≥ 2c2, and (3)

c2a2

b2 +
a2b2

c2 ≥ 2a2. (4)

Summing up (2), (3), and (4) gives 2
(

a2b2

c2 + b2c2

a2 + c2a2

b2

)

≥ 2(a2 +b2 +c2) = 2, henceS≥ 1. The

equality holds if and only if
ab
c

=
bc
a

=
ca
b

, i.e. a = b = c =
1√
3

. △
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Ivan Matić: Classical Inequalities 3

Problem 4. If x and y are two positive numbers less than1, prove that

1
1−x2 +

1
1−y2 ≥ 2

1−xy
.

Solution. Using the inequalitya+b≥2
√

abwe get 1
1−x2 + 1

1−y2 ≥ 2√
(1−x2)(1−y2)

. Now we notice

that(1−x2)(1−y2) = 1+x2y2−x2−y2 ≤ 1+x2y2−2xy= (1−xy)2 which implies 2√
(1−x2)(1−y2)

≥
2

1−xy and this completes the proof.△
Since the main focus of this text is to present some more advanced material, the remaining

problems will be harder then the ones already solved. For those who want more of the introductory-
type problems, there is a real hope that this website will soon get some text of that sort. However,
nobody should give up from reading the rest, things are getting very interesting.

Let us return to the inequality (1) and study some of its generalizations. Fora,b≥ 0, the con-
sequencea+b

2 ≥
√

ab of (1) is called the Arithmetic-Geometric mean inequality.Its left-hand side
is called the arithmetic mean of the numbersa andb, and its right-hand side is called the geometric
mean ofa andb. This inequality has its analogue:

a+b+c
3

≥ 3
√

abc, a,b,c≥ 0.

More generally, for a sequencex1, . . . ,xn of positive real numbers, the Arithmetic-Geometric mean
inequality holds:

x1 +x2+ · · ·+xn

n
≥ n

√
x1 ·x2 · · ·xn. (5)

These two inequalities are highly non-trivial, and there are variety of proofs to them. We did (5) for
n = 2. If you try to prove it forn = 3, you would see the real trouble. What a person tortured with
the casen= 3 would never suspect is thatn= 4 is much easier to handle. It has to do something with
4 being equal 2·2 and 36= 2 ·2. I believe you are not satisfied by the previous explanationbut you
have to accept that the casen = 3 comes after the casen = 4. The induction argument follows these
lines, but (un)fortunately we won’t do it here because that method doesn’t allow generalizations that
we need.

Besides (5) we have the inequality between quadratic and arithmetic mean, namely
√

x2
1 +x2

2+ · · ·+x2
n

n
≥ x1 +x2+ · · ·+xn

n
. (6)

The case of equality in (5) and (6) occurs if and only if all thenumbersx1, . . . ,xn are equal.
Arithmetic, geometric, and quadratic means are not the onlymeans that we will consider. There

are infinitely many of them, and there are infinitely many inequalities that generalize (5) and (6). The
beautiful thing is that we will consider all of them at once. For appropriately defined means, a very
general inequality will hold, and the above two inequalities will ended up just being consequences.

Definition 1. Given a sequence x1,x2, . . . ,xn of positive real numbers, the mean of order r, denoted
by Mr(x) is defined as

Mr(x) =

(

xr
1 +xr

2 + · · ·+xr
n

n

)
1
r

. (7)
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Example 1. M1(x1, . . . ,xn) is the arithmetic mean, while M2(x1, . . . ,xn) is the geometric mean of the
numbers x1, . . . ,xn.

M0 can’t be defined using the expression (7) but we will show later that asr approaches 0,Mr

will approach the geometric mean. The famous mean inequality can be now stated as

Mr(x1, . . . ,xn) ≤ Ms(x1, . . . ,xn), for 0≤ r ≤ s.

However we will treat this in slightly greater generality.

Definition 2. Let m= (m1, . . . ,mn) be a fixed sequence of non-negative real numbers such that
m1 + m2 + · · ·+ mn = 1. Then the weighted mean of order r of the sequence of positivereals x=
(x1, . . . ,xn) is defined as:

Mm
r (x) = (xr

1m1 +xr
2m2 + · · ·+xr

nmn)
1
r . (8)

Remark.Sequencem is sometimes called a sequence of masses, but more often it iscalled a
measure, andMm

r (x) is theLr norm with repsect to the Lebesgue integral defined bym. I didn’t want
to scare anybody. I just wanted to emphasize that this hard-core math and not something coming
from physics.

We will prove later that asr tends to 0, the weighted meanMm
r (x) will tend to the weighted

geometric mean of the sequencex defined byGm(x) = xm1
1 ·xm2

2 · · ·xmn
n .

Example 2. If m1 = m2 = · · · = 1
n then Mm

r (x) = Mr(x) where Mr(x) is previously defined by the
equation (7).

Theorem 3 (General Mean Inequality). If x = (x1, . . . ,xn) is a sequence of positive real numbers
and m= (m1, . . . ,mn) another sequence of positive real numbers satisfying m1 + · · ·+mn = 1, then
for 0≤ r ≤ s we have Mmr (x) ≤ Mm

s (x).

The proof will follow from the Hölders inequality.

2 Convex Funtions

To prove some of the fundamental results we will need to use convexity of certain functions. Proofs
of the theorems of Young, Minkowski, and Hölder will require us to use very basic facts – you
should be fine if you just read the definition 3 and example 3. However, the section on Karamata’s
inequality will require some deeper knowledge which you canfind here.

Definition 3. The function f: [a,b] → R is convex if for any x1,x2 ∈ [a,b] and anyλ ∈ (0,1) the
following inequality holds:

f (λx1 +(1−λ )x2) ≤ λ f (x1)+ (1−λ ) f (x2). (9)

Function is called concave if− f is convex. If the inequality in (9) is strict then the function is called
strictly convex.

http://www.imomath.com
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Now we will give a geometrical interpretation
of convexity. Take anyx3 ∈ (x1,x2). There is
λ ∈ (0,1) such thatx2 = λx1 +(1−λ )x3. Let’s
paint in green the line passing throughx3 and
parallel to they axis. Let’s paint in red the chord
connecting the points(x1, f (x1)) and(x2, f (x2)).
Assume that the green line and the red chord in-
tersect at the yellow point. They coordinate (also
called the height) of the yellow point is:

λ f (x1)+ (1−λ ) f (x2).

O x1 x2x3

f (x1)

f (x2)

f (x3)

x

y

The inequality (9) means exactly that the the green line willintersect the graph of a function below
the red chord. Iff is strictly convex then the equality can hold in (9) if and only if x1 = x2.

Example 3. The following functions are convex: ex, xp (for p ≥ 1, x > 0), 1
x (x 6= 0), while the

functionslogx (x> 0), sinx (0≤ x≤ π) , cosx (−π/2≤ x≤ π/2) are concave.

All functions mentioned in the previous example are elementary functions, and proving the con-
vexity/concavity for them would require us to go to the very basics of their foundation, and we will
not do that. In many of the examples and problems respective functions are slight modifications of
elementary functions. Their convexity (or concavity) is something we don’t have to verify. How-
ever, we will develop some criteria for verifying the convexity of more complex combinations of
functions.

Let us take another look at our picture above and compare the slopes of the three drawn lines.
The line connecting(x1, f (x1)) with (x3, f (x3)) has the smallest slope, while the line connecting
(x3, f (x3)) with (x2, f (x2)) has the largest slope. In the following theorem we will stateand prove
that the convex function has always an ”increasing slope”.

Theorem 4. Let f : [a,b]→ R be a convex function and a≤ x1 < x3 < x2 ≤ b. Then

f (x3)− f (x1)

x3−x1
≤ f (x2)− f (x1)

x2−x1
≤ f (x2)− f (x3)

x2−x3
. (10)

Proof. We can writex3 = λx1 +(1−λ )x2 for someλ ∈ (0,1). More preciselyλ = x2−x3
x2−x1

, and

1−λ = x3−x1
x2−x1

. From (9) we get

f (x3) ≤
x2−x3

x2−x1
f (x1)+

x3−x1

x2−x1
f (x2).

Subtracting f (x1) from both sides of the last inequality yieldsf (x3)− f (x1) = − x3−x1
x2−x1

f (x1) +
x3−x1
x2−x1

f (x2) giving immediately the first inequality of (10). The second inequality of (10) is obtained
in an analogous way.2

The rest of this chapter is using some of the properties of limits, continuity and differentiability.
If you are not familiar with basic calculus, you may skip thatpart, and you will be able to understand
most of what follows. The theorem 6 is the tool for verifying the convexity for differentiable func-
tions that we mentioned before. The theorem 5 will be used it in the proof of Karamata’s inequality.

Theorem 5. If f : (a,b)→ R is a convex function, then f is continuous and at every point x∈ (a,b)
it has both left and right derivative f′−(x) and f′+(x). Both f′− and f′+ are increasing functions on
(a,b) and f′−(x) ≤ f ′+(x).
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Solution. The theorem 10 implies that for fixedx the functionϕ(t) = f (t)− f (x)
t−x , t 6= x is an

increasing function bounded both by below and above. More precisely, if t0 and t1 are any two
numbers from(a,b) such thatt0 < x < t1 we have:

f (x)− f (t0)
x− t0

≤ ϕ(t) ≤ f (t1)− f (x)
t1−x

.

This specially means that there are limt→x− ϕ(t) and limt→x+ ϕ(t). The first one is precisely the
left, and the second one – the right derivative ofϕ at x. Since the existence of both left and right
derivatives implies the continuity, the statement is proved. 2

Theorem 6. If f : (a,b) → R is a twice differentiable function. Then f is convex on(a,b) if and
only if f ′′(x) ≥ 0 for every x∈ (a,b). Moreover, if f′′(x) > 0 then f is strictly convex.

Proof. This theorem is the immediate consequence of the previous one. 2

3 Inequalities of Minkowski and Hölder

Inequalities presented here are sometimes called weightedinequalities of Minkowski, Hölder, and
Cauchy-Schwartz. The standard inequalities are easily obtained by placingmi = 1 whenever some
m appears in the text below. Assuming that the summ1 + · · ·+ mn = 1 one easily get the gener-
alized (weighted) mean inequalities, and additional assumption mi = 1/n gives the standard mean
inequalities.

Lemma 1. If x,y > 0, p> 1 andα ∈ (0,1) are real numbers, then

(x+y)p ≤ α1−pxp +(1−α)1−pyp. (11)

The equality holds if and only ifxα = y
1−α .

Proof. For p > 1, the functionϕ(x) = xp is strictly convex hence(αa+ (1−α)b)p ≤ αap +
(1−α)bp. The equality holds if and only ifa = b. Settingx = αa andy = (1−α)b we get (11)
immediately.2

Lemma 2. If x1,x2, . . . ,xn,y1,y2, . . . ,yn and m1,m2, . . . ,mn are three sequences of positive real num-
bers and p> 1, α ∈ (0,1), then

n

∑
i=1

(xi +yi)
pmi ≤ α1−p

n

∑
i=1

xp
i mi +(1−α)1−p

n

∑
i=1

yp
i mi . (12)

The equality holds if and only ifxi
yi

= α
1−α for every i,1≤ i ≤ n.

Proof. From (11) we get(xi +yi)
p ≤ α1−pxp

i +(1−α)1−pyp
i . Multiplying by mi and adding as

1≤ i ≤ n we get (12). The equality holds if and only ifxi
yi

= α
1−α . 2

Theorem 7(Minkowski). If x1, x2, . . . , xn, y1, y2, . . . ,yn, and m1, m2, . . . ,mn are three sequences of
positive real numbers and p> 1, then

(

n

∑
i=1

(xi +yi)
pmi

)1/p

≤
(

n

∑
i=1

xp
i mi

)1/p

+

(

n

∑
i=1

yp
i mi

)1/p

. (13)

The equality holds if and only if the sequences(xi) and(yi) are proportional, i.e. if and only if there
is a constantλ such that xi = λyi for 1≤ i ≤ n.

http://www.imomath.com
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Proof. For anyα ∈ (0,1) we have inequality (12). Let us write

A =

(

n

∑
i=1

xp
i mi

)1/p

, B =

(

n

∑
i=1

yp
i mi

)1/p

.

In new terminology (12) reads as

n

∑
i=1

(xi +yi)
pmi ≤ α1−pAp +(1−α)1−pBp. (14)

If we chooseα such thatAα = B
1−α , then (11) impliesα1−pAp +(1−α)1−pBp = (A+B)p and (14)

now becomes
n

∑
i=1

(xi +yi)
pmi =





(

n

∑
i=1

xp
i mi

)1/p

+

(

n

∑
i=1

yp
i mi

)1/p




p

which is equivalent to (13).2

Problem 5 (SL70). If u1, . . . ,un,v1, . . . ,vn are real numbers, prove that

1+
n

∑
i=1

(ui +vi)
2 ≤ 4

3

(

1+
n

∑
i=1

u2
i

)(

1+
n

∑
i=1

v2
i

)

.

When does equality hold?

Solution. Let us seta =

√

n

∑
i=1

u2
i and b =

√

n

∑
i=1

v2
i . By Minkowski’s inequality (forp = 2)

we have∑n
i=1(ui + vi)

2 ≤ (a+ b)2. Hence the LHS of the desired inequality is not greater than
1+(a+b)2, while the RHS is equal to 4(1+a2)(1+b2)/3. Now it is sufficient to prove that

3+3(a+b)2 ≤ 4(1+a2)(1+b2).

The last inequality can be reduced to the trivial 0≤ (a−b)2+(2ab−1)2. The equality in the initial
inequality holds if and only ifui/vi = c for somec∈ R anda = b = 1/

√
2. △

Theorem 8(Young). If a,b > 0 and p,q > 1 satisfy 1
p + 1

q = 1, then

ab≤ ap

p
+

bq

q
. (15)

Equality holds if and only if ap = bq.

Proof. Sinceϕ(x) = ex is a convex function we have thate
1
px+ 1

qy ≤ 1
pex + 1

qey. The equality

holds if and only ifx = y, and the inequality (15) is immediately obtained by placinga = ex/p and
b = ey/q. The equality holds if and only ifap = bq. 2

Lemma 3. If x1,x2, . . . ,xn,y1,y2, . . . ,yn,m1,m2, . . . ,mn are three sequences of positive real numbers
and p,q > 1 such that1p + 1

q = 1, andα > 0, then

n

∑
i=1

xiyimi ≤
1
p
·α p ·

n

∑
i=1

xp
i mi +

1
q
· 1

αq ·
n

∑
i=1

yq
i mi . (16)

The equality holds if and only if
α pxp

i
p =

yq
i

qαq for 1≤ i ≤ n.



8 Olympiad Training Materials, www.imomath.com

Proof. From (15) we immediately getxiyi = (αxi)
yi
α ≤ 1

p ·α pxp
i + 1

q · 1
αq yq

i . Multiplying by mi

and adding asi = 1,2, . . . ,n we get (16). The inequality holds if and only if
α pxp

i
p =

yq
i

qαq for 1≤ i ≤ n.
2

Theorem 9 (Hölder). If x1,x2, . . . ,xn,y1,y2, . . . ,yn,m1,m2, . . . ,mn are three sequences of positive
real numbers and p,q > 1 such that1p + 1

q = 1, then

n

∑
i=1

xiyimi ≤
(

n

∑
i=1

xp
i mi

)1/p

·
(

n

∑
i=1

yq
i mi

)1/q

. (17)

The equality holds if and only if the sequences(xp
i ) and(yq

i ) are proportional.

Proof. The idea is very similar to the one used in the proof of Minkowski’s inequality. The
inequality (16) holds for any positive constantα. Let

A =

(

α p
n

∑
i=1

xp
i mi

)1/p

, B =

(

1
αq

n

∑
i=1

yq
i mi

)1/q

.

By Young’s inequality we have that1pAp + 1
qBq = AB if Ap = Bq. Equivalentlyα p ∑n

i=1xp
i mi =

1
αq ∑n

i=1yq
i mi . Choosing such anα we get

n

∑
i=1

xiyimi ≤
1
p

Ap +
1
q

Bq = AB=

(

n

∑
i=1

xp
i mi

)1/p

·
(

n

∑
i=1

yq
i mi

)1/q

. 2

Problem 6. If a1, . . . ,an and m1, . . . ,mn are two sequences of positive numbers such that a1m1 +

· · ·+anmn = α and a2
1m1 + · · ·+a2

nmn = β 2, prove that
√

a1m1 + · · ·+√
anmn ≥ α3/2

β .

Solution. We will apply Hölder’s inequality onxi = a1/3
i , yi = a2/3

i , p = 3
2, q = 3:

α =
n

∑
i=1

aimi ≤
(

n

∑
i=1

a1/2
i mi

)2/3

·
(

n

∑
i=1

a2
i mi

)1/3

=

(

n

∑
i=1

√
aimi

)2/3

·β 2/3.

Hence∑n
i=1

√
aimi ≥ α3/2

β . △
Proof of the theorem 3. Mm

r = (∑n
i=1xr

i ·mi)
1/r . We will use the Hölders inequality foryi = 1,

p = s
r , andq = p

1−p. Then we get

Mm
r ≤

(

n

∑
i=1

xrp
i ·mi

)
1
pr

·
(

n

∑
i=1

1q ·mi

)p/(1−p)

= Ms. 2

Problem 7. (SL98) Let x, y, and z be positive real numbers such that xyz= 1. Prove that

x3

(1+y)(1+z)
+

y3

(1+z)(1+x)
+

z3

(1+x)(1+y)
≥ 3

4
.

http://www.imomath.com
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Solution. The given inequality is equivalent to

x3(x+1)+y3(y+1)+z3(z+1) ≥ 3
4
(1+x+y+z+xy+yz+zx+xyz).

The left-hand side can be written asx4 +y4 +z4 +x3 +y3 +z3 = 3M4
4 +3M3

3. Usingxy+yz+zx≤
x2 +y2+z2 = 3M2

2 we see that the right-hand side is less than or equal to3
4(2+3M1+3M2

2). Since
M1 ≥ 3 3

√
xyz= 1, we can further say that the right-hand side of the requiredinequality is less than or

equal to3
4(5M1 +3M2

2). SinceM4 ≥ M3, andM1 ≤ M2 ≤ M3, the following inequality would imply
the required statement:

3M4
3 +3M3

3 ≥ 3
4
(5M3 +3M2

3).

However the last inequality is equivalent to(M3 − 1)(4M2
3 + 8M3 + 5) ≥ 0 which is true because

M3 ≥ 1. The equality holds if and only ifx = y = z= 1. △
Theorem 10(Weighted Cauchy-Schwartz). If xi , yi are real numbers, and mi positive real numbers,
then

n

∑
i=1

xiyimi ≤
√

n

∑
i=1

x2
i mi ·

√

n

∑
i=1

y2
i mi . (18)

Proof. After noticing that∑n
i=1xiyimi ≤ ∑n

i=1 |xi | · |yi |mi , the rest is just a special case (p= q= 2)
of the Hölder’s inequality.2

Problem 8. If a, b, and c are positive numbers, prove that

a
b

+
b
c

+
c
a
≥ (a+b+c)2

ab+bc+ca
.

Solution. We will apply the Cauchy-Schwartz inequality withx1 =
√a

b, x2 =
√

b
c , x3 =

√ c
a,

y1 =
√

ab, y2 =
√

bc, andy3 =
√

ca. Then

a+b+c = x1y1 +x2y2 +x3y3 ≤
√

x2
1 +x2

2+x2
3 ·
√

y2
1 +y2

2+y2
3

=

√

a
b

+
b
c

+
c
a
·
√

ab+bc+ca.

Theorem 11. If a1, . . . ,an are positive real numbers, then

lim
r→0

Mr(a1, . . . ,an) = am1
1 ·am2

2 · · ·amn
n .

Proof. This theorem is given here for completeness. It states that as r → 0 the mean of orderr
approaches the geometric mean of the sequence. Its proof involves some elementary calculus, and
the reader can omit the proof.

Mr(a1, . . . ,an) = e
1
r log(ar

1m1+···+ar
nmn).

Using the L’Hospitale’s theorem we get

lim
r→0

1
r

log(ar
1m1 + · · ·+ar

nmn) = lim
r→0

m1ar
1 loga1 + · · ·+mnar

n logan

ar
1m1 + · · ·+ar

nmn

= m1 loga1 + · · ·+mn logan

= log
(

am1
1 · · ·amn

n

)

.

The result immediately follows.2
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4 Inequalities of Schur and Muirhead

Definition 4. Let ∑!F(a1, . . . ,an) be the sum of n! summands which are obtained from the function
F(a1, . . . ,an) making all permutations of the array(a).

We will consider the special cases of the functioF, i.e. whenF(a1, . . . ,an) = aα1
1 · · · · · aαn

n ,
αi ≥ 0.

If (α) is an array of exponents andF(a1, . . . ,an) = aα1
1 · · · · ·aαn

n we will useT[α1, . . . ,αn] instead
of ∑!F(a1, . . . ,an), if it is clear what is the sequence(a).

Example 4. T[1,0, . . . ,0] = (n−1)! · (a1+a2+ · · ·+an), and T[1
n, 1

n, . . . , 1
n] = n! · n

√
a1 · · · · ·an. The

AM-GM inequality is now expressed as:

T[1,0, . . . ,0] ≥ T

[

1
n
, . . . ,

1
n

]

.

Theorem 12(Schur). For α ∈ R andβ > 0 the following inequality holds:

T[α +2β ,0,0]+T[α,β ,β ] ≥ 2T[α + β ,β ,0]. (19)

Proof. Let (x,y,z) be the sequence of positive reals for which we are proving (19). Using some
elementary algebra we get

1
2

T[α +2β ,0,0]+
1
2

T[α,β ,β ]−T[α + β ,β ,0]

= xα(xβ −yβ )(xβ −zβ )+yα(yβ −xβ )(yβ −zβ )+zα(zβ −xβ )(zβ −yβ ).

Without loss of generality we may assume thatx ≥ y ≥ z. Then in the last expression only the
second summand may be negative. Ifα ≥ 0 then the sum of the first two summands is≥ 0 because
xα(xβ − yβ )(xβ − zβ ) ≥ xα(xβ − yβ )(yβ − zβ ) ≥ yα(xβ − yβ )(yβ − zβ ) = −yα(xβ − yβ )(yβ − zβ ).
Similarly for α < 0 the sum of the last two terms is≥ 0. 2

Example 5. If we setα = β = 1, we get

x3 +y3 +z3+3xyz≥ x2y+xy2+y2z+yz2 +z2x+zx2.

Definition 5. We say that the array(α) majorizes array(α ′), and we write that in the following way
(α ′) ≺ (α), if we can arrange the elements of arrays(α) and(α ′) in such a way that the following
three conditions are satisfied:

1. α ′
1 + α ′

2+ · · ·+ α ′
n = α1 + α2 + · · ·+ αn;

2. α ′
1 ≥ α ′

2 ≥ ·· · ≥ α ′
n i α1 ≥ α2 ≥ ·· · ≥ αn.

3. α ′
1 + α ′

2+ · · ·+ α ′
ν ≤ α1 + α2 + · · ·+ αν , for all 1≤ ν < n.

Clearly,(α) ≺ (α).

Theorem 13 (Muirhead). The necessairy and sufficient condition for comparability of T[α] and
T[α ′], for all positive arrays(a), is that one of the arrays(α) and (α ′) majorizes the other. If
(α ′) ≺ (α) then

T[α ′] ≤ T[α].

Equality holds if and only if(α) and(α ′) are identical, or when all ais are equal.

http://www.imomath.com
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Proof. First, we prove the necessity of the condition. Setting thatall elements of the arraya are
equal tox, we get that

x∑α ′
i ≤ x∑αi .

This can be satisfied for both large and smallxs only if the condition 1 from the definition is satisfied.
Now we puta1 = · · · ,aν = x and aν+1 = · · · = an = 1. Comparing the highest powers ofx in
expressionsT[α] andT[α ′], knowing that for sufficiently largex we must haveT[α ′] ≤ T[α], we
conclude thatα ′

1 + · · ·+ α ′
ν ≤ α1 + · · ·+ αν .

Now we will proof the sufficiency of the condition. The statement will follow from the following
two lemmas. We will define one linear operationL on the set of the exponents(α). Suppose thatαk

andαl are two different exponents of(α) such thatαk > αl . We can write

αk = ρ + τ, αl = ρ − τ (0 < τ ≤ ρ).

If 0 ≤ σ < τ ≤ ρ , define the array(α ′) = L(α) in the following way:






α ′
k = ρ + σ = τ+σ

2τ αk + τ−σ
2τ αl ,

α ′
l = ρ −σ = τ−σ

2τ αk + τ+σ
2τ αl ,

α ′
ν = αν , (ν 6= k,ν 6= l).

The definition of this mapping doesn’t require that some of the arrays(α) and (α ′) is in non-
decreasing order.

Lemma 4. If (α ′) = L(α), then T[α ′] ≤ T[α], and equality holds if and only if all the elements of
(a) are equal.

Proof. We may rearrange the elements of the sequence such thatk = 1 i l = 2. Then we have

T[α]−T[α ′]

= ∑!aα3
3 · · ·aαn

n · (aρ+τ
1 aρ−τ

2 +aρ−τ
1 aρ+τ

2 −aρ+σ
1 aρ−σ

2 −aρ−σ
1 aρ+σ

2 )

= ∑!(a1a2)
ρ−τaα3

3 · · ·aαn
n (aτ+σ

1 −aτ+σ
2 )(aτ−σ

1 −aτ−σ
2 ) ≥ 0.

Eaquality holds if and only ifais are equal.2

Lemma 5. If (α ′) ≺ (α), but (α ′) and (α) are different, then(α ′) can be obtained from(α) by
succesive application of the transformation L.

Proof. Denote bym the number of differencesαν −α ′
ν that are6= 0. m is a positive integer and

we will prove that we can apply operationL in such a way that after each of applications, number
m decreases (this would imply that the procedure will end up after finite number of steps). Since
∑(αν −α ′

ν) = 0, and not all of differences are 0, there are positive and negative differences, but the
first one is positive. We can find suchk andl for which:

α ′
k < αk, α ′

k+1 = αk+1, . . . ,α ′
l−1 = αl−1, α ′

l > αl .

(αl −α ′
l is the first negative difference, andαk−α ′

k is the last positive difference before this negative
one). Letαk = ρ + τ andαl = ρ − τ, defineσ by

σ = max{|α ′
k−ρ |, |α ′

l −ρ |}.

At least one of the following two equalities is satisfied:

α ′
l −ρ = −σ , α ′

k−ρ = σ ,
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becauseα ′
k > α ′

l . We also haveσ < τ, becauseα ′
k < αk i α ′

l > αl . Let

α ′′
k = ρ + σ , α ′′

l = ρ −σ , α ′′
ν = αν (ν 6= k,ν 6= l).

Now instead of the sequence(α) we will consider the sequence(α ′′). Numberm has decreased by
at least 1. It is easy to prove that the sequence(α ′′) is increasing and majorizes(α ′). Repeating this
procedure, we will get the sequence(α ′) which completes the proof of the second lemma, and hence
the Muirhead’s theorem.2 2

Example 6. AM-GM is now the consequence of the Muirhead’s inequality.

Problem 9. Prove that for positive numbers a,b and c the following equality holds:

1
a3 +b3+abc

+
1

b3 +c3 +abc
+

1
c3 +a3+abc

≤ 1
abc

.

Solution. After multiplying both left and right-hand side of the required inequality withabc(a3+
b3 +abc)(b3+c3 +abc)(c3+a3+abc) we get that the original inequality is equivalent to

3
2T[4,4,1]+2T[5,2,2]+ 1

2T[7,1,1]+ 1
2T[3,3,3]≤

≤ 1
2T[3,3,3]+T[6,3,0]+ 3

2T[4,4,1]+ 1
2T[7,1,1]+T[5,2,2]

which is true because Muirhead’s theorem imply thatT[5,2,2]≤ T[6,3,0]. △
More problems with solutions using Muirhead’s inequality can be found in the section ”Prob-

lems”.

5 Inequalities of Jensen and Karamata

Theorem 14(Jensen’s Inequality). If f is convex function andα1, . . . ,αn sequence of real numbers
such thatα1+ · · ·+αn = 1, than for any sequence x1, . . . ,xn of real numbers, the following inequality
holds:

f (α1x1 + · · ·+ αnxn) ≤ α1 f (x1)+ · · ·+ αn f (xn).

Remark.If f is concave, thenf (α1x1 + · · ·+ αnxn) ≥ α1 f (x1)+ · · ·+ αn f (xn).

Example 7. Using Jensen’s inequality prove the generalized mean inequality, i.e. that for every
two sequences of positive real numbers x1, . . . ,xn and m1, . . . ,mn such that m1 + · · ·+ mn = 1 the
following inequality holds:

m1x1 +m2x2 + · · ·+mnxn ≥ xm1
1 ·xm2

2 · · ·xmn
n .

Theorem 15(Karamata’s inequalities). Let f be a convex function and x1, . . . ,xn, y1,y2, . . . ,yn two
non-increasing sequences of real numbers. If one of the following two conditions is satisfied:

(a) (y) ≺ (x);

(b) x1 ≥ y1, x1 + x2 ≥ y1 + y2, x1 + x2 + x3 ≥ y1 + y2 + y3, . . . , x1 + · · ·+ xn−1 ≥ y1 + · · ·+ yn−1,
x1 + · · ·+xn ≥ y1 + · · ·+yn and f is increasing;

then

n

∑
i=1

f (xi) ≥
n

∑
i=1

f (yi). (20)

http://www.imomath.com
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Proof. Let ci = f (yi)− f (xi)
yi−xi

, for yi 6= xi , andci = f ′+(xi), for xi = yi . Since f is convex, andxi , yi

are decreasing sequences,ci is non-increasing (because is represents the ”slope” off on the interval
betweenxi andyi). We now have

n

∑
i=1

f (xi)−
n

∑
i=1

f (yi) =
n

∑
i=1

ci(xi −yi) =
n

∑
i=1

cixi −
n

∑
i=1

ciyi

=
n

∑
i=1

(ci −ci+1)(x1 + · · ·+xi)

−
n

∑
i=1

(ci −ci+1)(y1 + · · ·+yi), (21)

here we definecn+1 to be 0. Now, denotingAi = x1 + · · ·+ xi andBi = y1 + · · ·+ yi (21) can be
rearranged to

n

∑
i=1

f (xi)−
n

∑
i=1

f (yi) =
n−1

∑
i=1

(ci −ci+1)(Ai −Bi)+cn · (An−Bn).

The sum on the right-hand side of the last inequality is non-negative becauseci is decreasing and
Ai ≥ Bi . The last termcn(An−Bn) is zero under the assumption (a). Under the assumption (b) we
have thatcn ≥ 0 ( f is increasing) andAn ≥ Bn and this implies (20).2

Problem 10. If a1 ≥ a2 ≥ ·· · ≥ an and b1 ≥ b2 ≥ ·· · ≥ bn are two sequences of positive real numbers
which satisfy the following conditions:

a1 ≥ b2, a1a2 ≥ b1b2, a1a2a3 ≥ b1b2b3, · · · ≥ a1a2 · · ·an ≥ b1b2 · · ·bn,

prove that
a1 +a2+ · · ·+an ≥ b1 +b2+ · · ·+bn.

Solution. Let ai = exi andbi = eyi . We easily verify that the conditions (b) of the Karamata’s
theorem are satisfied. Thus∑n

i=1eyi ≥ ∑n
i=1exi and the result immediately follows.△

Problem 11. If x1, . . . ,xn ∈ [−π/6,π/6], prove that

cos(2x1−x2)+cos(2x2−x3)+ · · ·+cos(2xn−x1) ≤ cosx1 + · · ·+cosxn.

Solution. Rearrange(2x1 − x2,2x2 − x3, . . . ,2xn − x1) and (x1, . . . ,xn) in two non-increasing
sequences(2xm1−xm1+1,2xm2 −xm2+1, . . . ,2xmn−xmn+1) and(xk1,xk2, . . . ,xkn) (here we assume that
xn+1 = x1. We will verify that condition (a) of the Karamata’s inequality is satisfied. This follows
from

(2xm1 −xm1+1 + · · ·+2xml −xml +1)− (xk1 + · · ·+xkl )

≥ (2xk1 −xk1+1 + · · ·+2xkl −xkl +1)− (xk1 + · · ·+xkl )

= (xk1 + · · ·xkl )− (xk1+1 + · · ·+xkl +1) ≥ 0.

The functionf (x) =−cosx is convex on[−π/2,π/2] hence Karamata’s inequality holds and we get

−cos(2x1−x2)−·· ·−cos(2xn−x1) ≥−cosx1−·· ·−cosxn,

which is obviously equivalent to the required inequality.△
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6 Chebyshev’s inequalities

Theorem 16 (Chebyshev’s inequalities). Let a1 ≥ a2 ≥ ·· · ≥ an and b1 ≥ b2 ≥ ·· · ≥ bn be real
numbers. Then

n
n

∑
i=1

aibi ≥
(

n

∑
i=1

ai

)(

n

∑
i=1

bi

)

≥ n
n

∑
i=1

aibn+1−i. (22)

The two inequalities become equalities at the same time whena1 = a2 = · · ·= an or b1 = b2 = · · · =
bn.

The Chebyshev’s inequality will follow from the following generalization (placingmi = 1
n for

the left part, and the right inequality follows by applying the left onai andci = −bn+1−i).

Theorem 17(Generalized Chebyshev’s Inequality). Let a1 ≥ a2 ≥ ·· · ≥ an and b1 ≥ b2 ≥ ·· · ≥ bn

be any real numbers, and m1, . . . ,mn non-negative real numbers whose sum is1. Then

n

∑
i=1

aibimi ≥
(

n

∑
i=1

aimi

)(

n

∑
i=1

bimi

)

. (23)

The inequality become an equality if and only if a1 = a2 = · · · = an or b1 = b2 = · · · = bn.

Proof. From(ai −a j)(bi −b j) ≥ 0 we get:

∑
i, j

(ai −a j)(bi −b j)mimj ≥ 0. (24)

Since(∑n
i=1aimi) · (∑n

i=1bimi) = ∑i, j aib jmimj , (24) implies that

0 ≤ ∑
i, j

aibimimj −∑
i, j

aib jmimj −∑
i, j

a jbimjmi +∑
i, j

a jb jmimj

= 2

[

∑
i

aibimi −
(

∑
i

aimi

)(

∑
i

bimi

)]

. 2

Problem 12. Prove that the sum of distances of the orthocenter from the sides of an acute triangle
is less than or equal to3r, where the r is the inradius.

Solution. Denotea = BC, b = CA, c = ABand letSABC denote the area of the triangleABC. Let
dA, dB, dC be the distances fromH to BC, CA, AB, andA′, B′, C′ the feet of perpendiculars from
A, B, C. Then we haveada + bdb + cdc = 2(SBCH + SACH + SABH) = 2P. On the other hand if we
assume thata≥ b≥ c, it is easy to prove thatdA ≥ dB ≥ dC. Indeed,a≥ b implies∠A≥ ∠B hence
∠HCB′ ≤ ∠HCA′ andHB′ ≤ HA′. The Chebyshev’s inequality implies

(a+b+c)r = 2P= ada +bdb+cdc >
1
3
(a+b+c)(da+db+dc). △

7 Problems

1. If a,b,c,d > 0, prove that

a
b+c

+
b

c+d
+

c
d+a

+
d

a+b
≥ 2.

http://www.imomath.com
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2. Prove that
a3

a2 +ab+b2 +
b3

b2 +bc+c2 +
c3

c2 +ca+a2 ≥ a+b+c
3

,

for a,b,c > 0.

3. If a,b,c,d,e, f > 0, prove that

ab
a+b

+
cd

c+d
+

e f
e+ f

≤ (a+c+e)(b+d+ f )
a+b+c+d+e+ f

.

4. If a,b,c≥ 1, prove that
√

a−1+
√

b−1+
√

c−1≤
√

c(ab+1).

5. Leta1,a2, . . . ,an,b1,b2, . . . ,bn be positive real numbers. Prove that

(

∑
i 6= j

aib j

)2

≥
(

∑
i 6= j

aia j

)(

∑
i 6= j

bib j

)

.

6. If 1
x + 1

y + 1
z = 1 for x,y,z> 0, prove that

(x−1)(y−1)(z−1)≥ 8.

7. Leta,b,c > 0 satisfyabc= 1. Prove that

1
√

b+ 1
a + 1

2

+
1

√

c+ 1
b + 1

2

+
1

√

a+ 1
c + 1

2

≥
√

2.

8. Given positive numbersa,b,c,x,y,z such thata+x = b+y = c+z= S, prove thatay+bz+
cx< S2.

9. Leta,b,c be positive real numbers. Prove the inequality

a2

b
+

b2

c
+

c2

a
≥ a+b+c+

4(a−b)2

a+b+c
.

10. Determine the maximal real numbera for which the inequality

x2
1 +x2

2 +x2
3+x2

4 +x2
5 ≥ a(x1x2 +x2x3 +x3x4 +x4x5)

holds for any five real numbersx1,x2,x3,x4,x5.

11. If x,y,z≥ 0 andx+y+z= 1, prove that

0≤ xy+yz+zx−2xyz≤ 7
27

.

12. Leta,b andc be positive real numbers such thatabc= 1. Prove that

1
a3(b+c)

+
1

b3(c+a)
+

1
c3(a+b)

≥ 3
2
.
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13. If a,b andc are positive real numbers, prove that:

a3

b2−bc+c2 +
b3

c2−ca+a2 +
c3

a2−ab+b2 ≥ 3 · ab+bc+ca
a+b+c

.

14. (IMO05) Letx,y andzbe positive real numbers such thatxyz≥ 1. Prove that

x5−x2

x5 +y2+z2 +
y5−y2

y5 +z2 +x2 +
z5−z2

z5 +x2+y2 ≥ 0.

15. Leta1, . . . ,an be positive real numbers. Prove that

a3
1

a2
+

a3
2

a3
+ · · ·+ a3

n

a1
≥ a2

1 +a2
2+ · · ·+a2

n.

16. Leta1, . . . ,an be positive real numbers. Prove that

(1+a1)(1+a2) · · · (1+an) ≤
(

1+
a2

1

a2

)

·
(

1+
a2

2

a3

)

· · · · ·
(

1+
a2

n

a1

)

.

17. If a,b, andc are the lengths of the sides of a triangle,s its semiperimeter, andn≥ 1 an integer,
prove that

an

b+c
+

bn

c+a
+

cn

a+b
≥
(

2
3

)n−2

·sn−1.

18. Let 0< x1 ≤ x2 ≤ ·· · ≤ xn (n≥ 2) and

1
1+x1

+
1

1+x2
+ · · ·+ 1

1+xn
= 1.

Prove that

√
x1 +

√
x2 + · · ·+√

xn ≥ (n−1)

(

1√
x1

+
1√
x2

+ · · ·+ 1√
xn

)

.

19. Suppose that any two members of certain society are either friendsor enemies. Suppose that
there is total ofn members, that there is total ofq pairs of friends, and that in any set of
three persons there are two who are enemies to each other. Prove that there exists at least one

member among whose enemies we can find at mostq ·
(

1− 4q
n2

)

pairs of friends.

20. Given a set of unit circles in the plane whose total area isS. Prove that among those circles
there exist certain number of non-intersecting circles whose total area is≥ 2

9S.

8 Solutions

1. Denote byL the left-hand side of the required inequality. If we add the first and the third
summand ofL we get

a
b+c

+
c

d+a
=

a2 +c2+ad+bc
(b+c)(a+d)

.
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Ivan Matić: Classical Inequalities 17

We will bound the denominator of the last fraction using the inequalityxy≤ (x+ y)2/4 for
appropriatex andy. Forx = b+c andy = a+d we get(b+c)(a+d) ≤ (a+b+c+d)2/4.
The equality holds if and only ifa+d = b+c. Therefore

a
b+c

+
c

d+a
≥ 4

a2+c2 +ad+bc
(a+b+c+d)2 .

Similarly b
c+d + d

a+b ≥ 4b2+d2+ab+cd
(a+b+c+d)2 (with the equality if and only ifa+b= c+d) implying

a
b+c

+
b

c+d
+

c
d+a

+
d

a+b

≥ 4
a2 +b2+c2+d2+ad+bc+ab+cd

(a+b+c+d)2

= 4
a2 +b2+c2+d2+(a+c)(b+d)

[(a+c)+ (b+d)]2
.

In order to solve the problem it is now enough to prove that

2
a2 +b2+c2+d2+(a+c)(b+d)

[(a+c)+ (b+d)]2
≥ 1. (25)

After multiplying both sides of (25) by[(a+ c)+ (b+ d)]2 = (a+ c)2 +(b+ d)2 it becomes
equivalent to 2(a2 + b2 + c2 + d2) ≥ (a+ c)2 +(b+ d)2 = a2 + b2 + c2 + d2 + 2ac+ 2bd. It
is easy to see that the last inequality holds because many terms will cancel and the remaining
inequality is the consequence ofa2 + c2 ≥ 2ac andb2 + d2 ≥ 2bc. The equality holds if and
only if a = c andb = d.

2. We first notice that

a3−b3

a2 +ab+b2 +
b3−c3

b2 +bc+c2 +
c3−a3

c2 +ca+a2 = 0.

Hence it is enough to prove that

a3 +b3

a2 +ab+b2 +
b3 +c3

b2 +bc+c2 +
c3 +a3

c2 +ca+a2 ≥ 2(a+b+c)
3

.

However since 3(a2−ab+b2) ≥ a2 +ab+b2,

a3 +b3

a2 +ab+b2 = (a+b)
a2−ab+b2

a2+ab+b2 ≥ a+b
3

.

The equality holds if and only ifa = b = c.

Second solution.First we prove that

a3

a2 +ab+b2 ≥ 2a−b
3

. (26)

Indeed after multiplying we get that the inequality is equivalent toa3 + b3 ≥ ab(a+ b), or
(a+b)(a−b)2 ≥ 0 which is true. After adding (26) with two similar inequalities we get the
result.



18 Olympiad Training Materials, www.imomath.com

3. We will first prove that

ab
a+b

+
cd

c+d
≤ (a+c)(b+d)

a+b+c+d
. (27)

As is the case with many similar inequalities, a first look at (27) suggests to multiply out both
sides by(a+b)(c+d)(a+b+c+d). That looks scary. But we will do that now. In fact you
will do, I will not. I will just encourage you and give moral support (try to imagine me doing
that). After you multiply out everything (do it twice, to make sure you don’t make a mistake in
calculation), the result will be rewarding. Many things cancel out and what remains is to verify
the inequality 4abcd≤ a2d2 + b2c2 which is true because it is equivalent to 0≤ (ad−bc)2.
The equality holds if and only ifad= bc, or a

b = c
d .

Applying (27) with the numbersA = a+c, B = b+d, C = e, andD = f yields:

(a+c)(b+d)

a+b+c+d
+

e f
e+ f

≤ (A+C)(B+D)

A+B+C+D
=

(a+c+e)(b+d+ f )
a+b+c+d+e+ f

,

and the required inequality is proved because (27) can be applied to the first term of the left-
hand side. The equality holds if and only ifa

b = c
d = e

f .

4. To prove the required inequality we will use the similar approach as in the previous problem.
First we prove that

√
a−1+

√
b−1≤

√
ab. (28)

Squaring both sides gives us that the original inequality isequivalent to

a+b−2+2
√

(a−1)(b−1)≤ ab

⇔ 2
√

(a−1)(b−1)≤ ab−a−b+2= (a−1)(b−1)+1. (29)

The inequality (29) is true because it is of the formx+1≥ 2
√

x for x = (a−1)(b−1).

Now we will apply (28) on numbersA = ab+1 andB = c to get
√

ab+
√

c−1 =
√

A−1+
√

B−1≤
√

AB=
√

(ab+1)c.

The first term of the left-hand side is greater than or equal to
√

a−1+
√

b−1 which proves
the statement. The equality holds if and only if(a−1)(b−1) = 1 andab(c−1) = 1.

5. Let us denotep = ∑n
i=1ai,q = ∑n

i=1bi ,k = ∑n
i=1a2

i , l = ∑n
i=1b2

i , andm= ∑n
i=1aibi . The fol-

lowing equalities are easy to verify:

∑
i 6= j

aib j = pq−m, ∑
i 6= j

aia j = p2−k, and∑
i 6= j

bib j = q2− l ,

so the required inequality is equivalent to

(pq−m)2 ≥ (p2−k)(q2− l) ⇔ l p2−2qm· p+m2+q2k−kl ≥ 0.

Consider the last expression as a quadratic equation inp, i.e. ϕ(p) = l p2−2qm· p+q2k−kl.
If we prove that its discriminant is less than or equal to 0, weare done. That condition can be
written as:

q2m2− l(m2+q2k−kl) ≤ 0⇔ (lk−m2)(q2− l) ≥ 0.
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The last inequality is true becauseq2 − l = ∑i 6= j bib j > 0 (bi are positive), andlk −m2 ≥
0 (Cauchy-Schwartz inequality). The equality holds if and only if lk −m2 = 0, i.e. if the
sequences(a) and(b) are proportional.

6. This is an example of a problem where we have some conditions onx, y, andz. Since there are
many reciprocals in those conditions it is natural to divideboth sides of the original inequality
by xyz. Then it becomes

(

1− 1
x

)

·
(

1− 1
y

)

·
(

1− 1
z

)

≥ 8
xyz

. (30)

However 1− 1
x = 1

y + 1
z and similar relations hold for the other two terms of the left-hand side

of (30). Hence the original inequality is now equivalent to
(

1
y

+
1
z

)

·
(

1
z

+
1
x

)

·
(

1
x

+
1
y

)

≥ 8
xyz

,

and this follows from1
x + 1

y ≥ 2 1√
xy, 1

y + 1
z ≥ 2 1√

yz, and 1
z + 1

x ≥ 2 1√
zx. The equality holds if

and only ifx = y = z= 3.

7. Notice that
1
2

+b+
1
a

+
1
2

> 2

√

1
2
·
(

b+
1
a

+
1
2

)

.

This inequality is strict for any two positive numbersa andb. Using the similar inequalities
for the other two denominators on the left-hand side of the required inequality we get:

1
√

b+ 1
a + 1

2

+
1

√

c+ 1
b + 1

2

+
1

√

a+ 1
c + 1

2

>
√

2

(

1

1+ 1
a +b

+
1

1+ 1
b +c

+
1

1+ 1
c +a

)

. (31)

The last expression in (31) can be transformed using1
1+ 1

a+b
= a

1+a+ab = a
1+ 1

c +a
and 1

1+ 1
b+c

=

1
c(ab+a+1)

=
1
c

1+ 1
c +a

. Thus

√
2

(

1

1+ 1
a +b

+
1

1+ 1
b +c

+
1

1+ 1
c +a

)

=
√

2· 1+ 1
c +a

1+ 1
c +a

=
√

2.

The equality can never hold.

8. DenoteT = S/2. One of the triples(a,b,c) and (x,y,z) has the property that at least two
of its members are greater than or equal toT. Assume that(a,b,c) is the one, and choose
α = a−T, β = b−T, andγ = c−T. We then havex = T −α, y = T −β , andz= T − γ.
Now the required inequality is equivalent to

(T + α)(T −β )+ (T + β )(T − γ)+ (T + γ)(T −α) < 4T2.
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After simplifying we get that what we need to prove is

− (αβ + β γ + γα) < T2. (32)

We also know that at most one of the numbersα, β , γ is negative. If all are positive, there is
nothing to prove. Assume thatγ < 0. Now (32) can be rewritten as−αβ − γ(α + β ) < T2.
Since−γ < T we have that−αβ −γ(α +β ) <−αβ +T(α +β ) and the last term is less than
T since(T −α)(T −β ) > 0.

9. Starting from(a−b)2

b = a2

b −2a+b and similar equalitites for(b−c)2/c and(c−a)2/a we get
the required inequality is equivalent to

(a+b+c)

(

(a−b)2

b
+

(b−c)2

a
+

(c−a)2

b

)

≥ 4(a−b)2. (33)

By the Cauchy-Schwartz inequality we have that the left-hand side of (33) is greater than or
equal to(|a−b|+ |b−c|+ |c−a|)2. (33) now follows from|b−c|+ |c−a|≥ |a−b|.

10. Note that

x2
1 +x2

2 +x2
3+x2

4 +x2
5

=

(

x2
1 +

x2
2

3

)

+

(

2x2
2

3
+

x2
3

2

)

+

(

x2
3

2
+

2x2
4

3

)

+

(

x2
4

3
+x2

5

)

.

Now applying the inequalitya2 +b2 ≥ 2abwe get

x2
1 +x2

2 +x2
3+x2

4 +x2
5 ≥

2√
3
(x1x2 +x2x3 +x3x4 +x4x5).

This proves thata≥ 2√
3
. In order to prove the other inequality it is sufficient to notice that for

(x1,x2,x3,x4,x5) = (1,
√

3,2,
√

3,1) we have

x2
1 +x2

2 +x2
3+x2

4 +x2
5 =

2√
3
(x1x2 +x2x3 +x3x4 +x4x5).

11. Sincexy+ yz+ zx−2xyz= (x+ y+ z)(xy+ yz+ zx)−2xyz= T[2,1,0]+ 1
6T[1,1,1] the left

part of the inequality follows immediately. In order to prove the other part notice that

7
27

=
7
27

(x+y+z)3 =
7
27

(

1
2

T[3,0,0]+3T[2,1,0]+T[1,1,1]

)

.

After multiplying both sides by 54 and cancel as many things as possible we get that the
required inequality is equivalent to:

12T[2,1,0]≤ 7T[3,0,0]+5T[1,1,1].

This inequality is true because it follows by adding up the inequalities 2T[2,1,0] ≤ 2T[3,0,0]
and 10T[2,1,0]≤ 5T[3,0,0]+5T[1,1,1] (the first one is a consequence of the Muirhead’s and
the second one of the Schur’s theorem forα = β = 1).
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12. The expressions have to be homogenous in order to apply the Muirhead’s theorem. First we
divide both left and right-hand side by(abc)

4
3 = 1 and after that we multiply both sides by

a3b3c3(a+b)(b+c)(c+a)(abc)
4
3 . The inequality becomes equivalent to

2T

[

16
3

,
13
3

,
7
3

]

+T

[

16
3

,
16
3

,
4
3

]

+T

[

13
3

,
13
3

,
10
3

]

≥ 3T[5,4,3]+T[4,4,4].

The last inequality follows by adding the following three which are immediate consequences
of the Muirhead’s theorem:

1. 2T
[

16
3 , 13

3 , 7
3

]

≥ 2T[5,4,3],

2. T
[

16
3 , 16

3 , 4
3

]

≥ T[5,4,3],

3. T
[

13
3 , 13

3 , 10
3

]

≥ T[4,4,4].

The equality holds if and only ifa = b = c = 1.

13. The left-hand side can be easily transformed intoa3(b+c)
b3+c3 + b3(c+a)

c3+a3 + c3(a+b)

a3+b3 . We now multiply

both sides by(a+ b+ c)(a3 + b3)(b3 + c3)(c3 + a3). After some algebra the left-hand side
becomes

L = T[9,2,0]+T[10,1,0]+T[9,1,1]+T[5,3,3]+2T[4,4,3]
+T[6,5,0]+2T[6,4,1]+T[6,3,2]+T[7,4,0]+T[7,3,1],

while the right-hand side transforms into

D = 3(T[4,4,3]+T[7,4,0]+T[6,4,1]+T[7,3,1]).

According to Muirhead’s theorem we have:

1. T[9,2,0] ≥ T[7,4,0],

2. T[10,1,0]≥ T[7,4,0],

3. T[6,5,0] ≥ T[6,4,1],

4. T[6,3,2] ≥ T[4,4,3].

The Schur’s inequality gives usT[4,2,2]+ T[8,0,0] ≥ 2T[6,2,0]. After multiplying by abc,
we get:

5. T[5,3,3]+T[9,1,1]≥ T[7,3,1].

Adding up 1,2,3,4, 5, and adding 2T[4,4,3]+T[7,4,0]+2T[6,4,1]+T[7,3,1] to both sides
we getL ≥ D. The equality holds if and only ifa = b = c.

14. Multiplying the both sides with the common denominator we get

T5,5,5 +4T7,5,0+T5,2,2+T9,0,0 ≥ T5,5,2 +T6,0,0+2T5,4,0+2T4,2,0+T2,2,2.

By Schur’s and Muirhead’s inequalities we have thatT9,0,0 + T5,2,2 ≥ 2T7,2,0 ≥ 2T7,1,1. Since
xyz≥ 1 we have thatT7,1,1 ≥ T6,0,0. Therefore

T9,0,0+T5,2,2 ≥ 2T6,0,0 ≥ T6,0,0 +T4,2,0.

Moreover, Muirhead’s inequality combined withxyz≥ 1 gives usT7,5,0 ≥ T5,5,2, 2T7,5,0 ≥
2T6,5,1 ≥ 2T5,4,0, T7,5,0 ≥ T6,4,2 ≥ T4,2,0, andT5,5,5 ≥ T2,2,2. Adding these four inequalities to
(1) yields the desired result.
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15. Let ai = exi and let(m1, . . . ,mn), (k1, . . . ,kn) be two permutations of(1, . . . , n) for which
the sequences(3xm1 − xm1+1, . . . ,3xmn − xmn+1) and(2xk1, . . . , 2xkn) are non-increasing. As
above we assume thatxn+1 = xn. Similarly as in the problem 11 from the section 5 we prove
that(2xki ) ≺ (3xmi −xmi+1). The functionf (x) = ex is convex so the Karamata’s implies the
required result.

16. Hint: Choosexi such thatai = exi . Sort the sequences(2x1−x2, . . . ,2xn−x1) and(x1, . . . ,xn)
in non-increasing order, prove that the first majorizes the second, and apply Karamata’s in-
equality with the convex functionf (x) = 1+ex.

17. Applying the Chebyshev’s inequality first we get

an

b+c
+

bn

c+a
+

cn

a+b
≥ an +bn+cn

3
·
(

1
a+b

+
1

b+c
+

1
c+a

)

.

The Cauchy-Schwartz inequality gives:

2(a+b+c)

(

1
a+b

+
1

b+c
+

1
c+a

)

≥ 9,

and the inequalityMn ≥ M2 gives

an +bn+cn

3
≥
(

a+b+c
3

)n

.

In summary

an

b+c
+

bn

c+a
+

cn

a+b
≥

(

a+b+c
3

)n( 1
a+b

+
1

b+c
+

1
c+a

)

≥ 1
3
· 1
2
·
(

2
3

s

)n−1

·9 =

(

2
3

)n−2

sn−1.

18. It is enough to prove that

(√
x1 +

1√
x1

)

+

(√
x2 +

1√
x2

)

+ · · ·+
(√

xn +
1√
xn

)

≥ n

(

1√
x1

+
1√
x2

+ · · ·+ 1√
xn

)

,

or equivalently

(

1+x1√
x1

+ · · ·+ 1+xn√
xn

)(

1
1+x1

+
1

1+x2
+ · · ·+ 1

1+xn

)

≥ n ·
(

1√
x1

+
1√
x2

+ · · ·+ 1√
xn

)

.

Consider the functionf (x) =
√

x+ 1√
x

= x+1√
x
,x ∈ (0,+∞). It is easy to verify thatf is non-

decreasing on(1,+∞) and that f (x) = f
(

1
x

)

for everyx > 0. Furthermore from the given
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conditions it follows that onlyx1 can be less than 1 and that11+x2
≤ 1− 1

1+x1
= x1

1+x1
. Hence

x2 ≥ 1
x1

. Now it is clear that (in both of the casesx1 ≥ 1 andx1 < 1):

f (x1) = f

(

1
x1

)

≤ f (x1) ≤ ·· · ≤ f (xn).

This means that the sequence
(

1+xk
xk

)n

k=1
is non-decreasing. Thus according to the Cheby-

shev’s inequality we have:
(

1+x1√
x1

+ · · ·+ 1+xn√
xn

)(

1
1+x1

+
1

1+x2
+ · · ·+ 1

1+xn

)

≥ n ·
(

1√
x1

+
1√
x2

+ · · ·+ 1√
xn

)

.

The equality holds if and only if 1
1+x1

= · · · = 1
1+xn

, or 1+x1√
x1

= · · · = 1+xn√
xn

, which implies that
x1 = x2 = · · · = xn. Thus the equality holds if and only ifx1 = · · · = xn = n−1.

19. Denote bySthe set of all members of the society, byA the set of all pairs of friends, and byN
the set of all pairs of enemies. For everyx∈ S, denote byf (x) number of friends ofx and by
F(x) number of pairs of friends among enemies ofx. It is easy to prove:

q = |A| = 1
2 ∑

x∈S

f (x);

∑
{a,b}∈A

( f (a)+ f (b)) = ∑
x∈S

f 2(x).

If a andb are friends, then the number of their common enemies is equalto (n−2)− ( f (a)−
1)− ( f (b)−1) = n− f (a)− f (b). Thus

1
n ∑

x∈S

F(x) =
1
n ∑
{a,b}∈A

(n− f (a)− f (b)) = q− 1
n ∑

x∈S

f 2(x).

Using the inequality between arithmetic and quadratic meanon the last expression, we get

1
n ∑

x∈S

F(x) ≤ q− 4q2

n2

and the statement of the problem follows immediately.

20. Consider the partition of planeπ into regular hexagons, each having inradius 2. Fix one of
these hexagons, denoted byγ. For any other hexagonx in the partition, there exists a unique
translationτx taking it ontoγ. Define the mappingϕ : π → γ as follows: IfA belongs to the
interior of a hexagonx, thenϕ(A) = τx(A) (if A is on the border of some hexagon, it does not
actually matter where its image is).

The total area of the images of the union of the given circles equalsS, while the area of the

hexagonγ is 8
√

3. Thus there exists a pointB of γ that is covered at least
S

8
√

3
times, i.e.,
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such thatϕ−1(B) consists of at least
S

8
√

3
distinct points of the plane that belong to some of

the circles. For any of these points, take a circle that contains it. All these circles are disjoint,

with total area not less than
π

8
√

3
S≥ 2S/9.
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