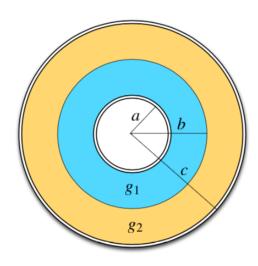


Auxiliar 6: Dieléctricos, Corriente eléctrica & Circuitos

Profesor: Nicolás Vidal

Auxiliares: Diland Castro, Almendra Del Moral & José Castro

Fecha: 22 de Abril de 2019

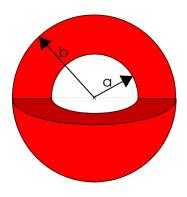

Pregunta 1

Se tiene un sistema formado por dos casquetes conductores concéntricos conectados a una diferencia de potencial V_0 , con $V(a) = V_0$ (la configuración se muestra en la figura).

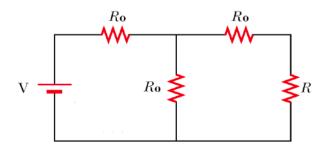
En el espacio interior a las placas se colocan dos medios dieléctricos imperfectos con g_1 , ϵ_1 y g_2 , ϵ_2 respectivamente.

Considere que se ha alcanzo el régimen estacionario.

- a) Encuentre una expresión para el vector densidad de corriente \vec{J} .
- b) Obtenga la expresión para el campo eléctrico entre placas.
- c) Calcule el valor de la resistencia.
- d) Determine la densidad de carga superficial entre los medios.
- e) Por último, calcule la potencia



Pregunta 2


En una esfera de radio a se distribuye homogéneamente una carga Q. Alrededor de ella se sitúa una capa dieléctrica de radio interior a y radio exterior b, cuya permitividad es $\epsilon = \frac{k}{r^2}$.

- (a) Determine los vectores \vec{D} y \vec{E} en la capa dieléctrica.
- (b) Obtener las densidades de carga de polarización en el dieléctrico.
- (c) Obtenga la carga total de polarización.

Pregunta 3

Considere el circuito de la figura. Encuentre la resistencia R que debe colocarse para que en esa resistencia se disipe la máxima potencia.

