

Auxiliar #21

Ecuación de Lagrange

Auxiliares: Cristóbal Zenteno, Miguel Letelier y Benjamín Medina

 ${f P1}$ En la figura de más abajo se ilustra un semi-aro de forma semicircular de radio R, cuyos extremos A y B se mantienen fijos a una estructura en reposo. El plano del semi-aro es vertical. Un anillo de masa m es pasado por el aro, el cual es atado por dos resortes, cada uno de los cuales une su extremo libre a los puntos A y B del semi-aro ubicados a nivel. Los resortes siguen la forma del semi-aro, siendo sus constantes elásticas k_1 y k_2 , respectivamente. Ambos resortes tienen una longitud natural $\pi R/2$. Sea θ la posición angular del anillo con respecto a la vertical:

- a) Construya el lagrangiano del sistema y obtenga la ecuación del movimiento del anillo.
- b) A partir de la ecuación anterior, obtenga $\dot{\theta}$ como función de θ
- c) Calcule la frecuencia ω de oscilaciones pequeñas del anillo.

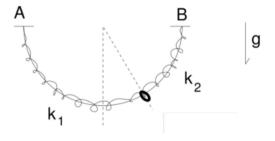


Figura 1

- $\boxed{\mathbf{P2}}$ Adriana, de tres años, quiere balancearse en un columpio de largo R. El cuerpo de Adriana es de masa M y sus pies tienen masa m. Para balancearse, Adriana decide mover sus pies de tal forma que estos describan un movimiento angular $\phi(t)$ con respecto al eje vertical, dado por $\phi(t)=\phi_0cos(\Omega t),$ donde $\phi_0<<1.$ La distancia entre sus pies y el eje de rotación (su cuerpo) es D.
- a) Determine la energía cinética total K del sistema, en función de θ y $\dot{\theta}$, donde θ es el ángulo entre la vertical y la cuerda del columpio. Note que K también dependerá del tiempo t a través de ϕ y $\dot{\phi}$.
- b) Determine el potencial U del sistema en función de θ .
- c) A partir del Lagrangiano L=K-U, determine la ecuación de movimiento para θ .
- d) Reduzca la ecuación de movimiento encontrada en la parte anterior para el caso de pequeñas oscilaciones.

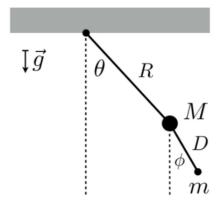


Figura 2