Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática MA2001-3 Cálculo en Varias Variables 10 de Octubre de 2018

Auxiliar #3: Límites, Continuidad y Compacidad

Profesor: David Salas. Auxiliar: Matías Romero.

P1. Determine si los siguientes límites existen o no. En caso de existir, calcúlelos y justifique.

(a)
$$\lim_{(x,y)\to(0,0)} \frac{x^6 + x^2 + 3y^2}{\sqrt{x^2 + y^2}}$$

(b)
$$\lim_{(x,y)\to(0,0)} \frac{x^4+y^4}{x^2+y^2}$$

(c)
$$\lim_{(x,y,z)\to(0,0,0)} \frac{xy^2}{x^2+y^4+z^2}$$

P2. Considere la función $f: \mathbb{R}^2 \to \mathbb{R}$ dada por

$$f(x,y) = \begin{cases} \frac{|xy|^{\alpha}}{x^2 - xy + y^2} & \text{si} \quad (x,y) \neq (0,0) \\ 0 & \text{si} \quad (x,y) = (0,0) \end{cases}$$

Determine los valores de $\alpha \in \mathbb{R}$ para los cuales la función es continua.

P3. Sea $f: \mathbb{R}^d \to \mathbb{R}$ una función continua tal que

- f(0) > 0
- $f(x) \le 0$ para todo $x \operatorname{con} ||x|| > 1$.

Demuestre que existe $\bar{x} \in \mathbb{R}^d$ tal que

$$f(\bar{x}) > f(x), \ \forall x \in \mathbb{R}^d.$$

P4. Considere $D_1 := \{ (x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 4 \}$ y $D_2 := \{ (x, y) \in \mathbb{R}^2 : 4 < x^2 + y^2 \le 9 \}$. Para $\lambda \in \mathbb{R}$ se define

$$f(x,y) = \begin{cases} x^2 + y^2 - \lambda & \text{si} \quad (x,y) \in D_1 \\ 0 & \text{si} \quad (x,y) \in D_2 \end{cases}$$

- (a) Encuentre λ tal que f sea continua en $D_1 \cup D_2$. De ahora en adelante, se considera dicho valor de λ .
- **(b)** Pruebe que el grafo de f:

$$Gr(f) := \{ (x, y, z) \in \mathbb{R}^3 : z = f(x, y), (x, y) \in D_1 \cup D_2 \}$$

es cerrado y acotado

(c) Pruebe que, dado cualquier $(x_0, y_0, z_0) \in \mathbb{R}^3$, existe un punto en el grafo de f que minimiza la distancia a (x_0, y_0, z_0) .