Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática MA2001-3 Cálculo en Varias Variables 26 de Agosto de 2018

Auxiliar #1: Límites y Normas

Profesor: David Salas. Auxiliar: Matías Romero.

P1. Sean $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ sucesiones nulas en \mathbb{R} , $\alpha\in\mathbb{R}$ y $f:\mathbb{R}\to\mathbb{R}$ derivable con $f(0)\neq 0$, $f'(0)\neq 0$. Estudie la convergencia de la sucesión en \mathbb{R}^3 definida por:

$$x_n = (\frac{a_n^2(|a_n| - |b_n|)b_n}{(a_n^2 + b_n^2)(a_n - b_n)}, \frac{a_n(\cos(b_n) - 1)}{a_n^2 + b_n^2}, \frac{f(b_n)^2 - f(0)^2}{b_n^{\alpha}})$$

- **P2.** Sea E un espacio vectorial sobre \mathbb{R} de dimensión d. Un resultado de álgebra lineal asegura que E es isomorfo a \mathbb{R}^d , esto es, que existe una transformación lineal $T: \mathbb{R}^d \to E$ biyectiva. Sea $\|\cdot\|_E: E \to \mathbb{R}_+$ una norma en E, es decir cumple:
 - (i) (Identificación del Elemento Neutro) $||e||_E = 0 \iff e = 0 \in E$
- (ii) (Ponderación por Escalar) $\|\lambda e\|_E = |\lambda| \|e\|_E$, para todo $\lambda \in \mathbb{R}, e \in E$
- (iii) (Desigualdad Triangular) $||e + f||_E \le ||e||_E + ||f||_E$, para todo $e, f \in E$.

Pruebe que la función $\|\cdot\|: \mathbb{R}^d \to \mathbb{R}$ definida por $\|x\| = \|T(x)\|_E$ es una norma en \mathbb{R}^d . ¿Se puede definir una norma en \mathbb{E} a partir de una norma arbitraria en \mathbb{R}^d ?

P3. Sea \mathcal{P}_n el espacio vectorial de los polinomios de grado menor o igual a n. En \mathcal{P}_n se define la función

$$\|\cdot\|: \mathcal{P}_n \to \mathbb{R}$$

$$p(\cdot) \mapsto \int_0^1 |p'(t)|dt + |p(0)|$$

- (a) Muestre que $\|\cdot\|$ es norma en \mathcal{P}_n .
- (b) Encuentre $L \in \mathbb{R}$ tal que $\forall p \in \mathcal{P}_n, \|p\| \leq L \cdot (\max_{i \in \{0,1,\ldots,n\}} |a_i|), \text{ donde } p(t) = \sum_{i=0}^n a_i t^i$
- (c) Sea $p_0 = 1 + t + t^2 + t^3 + ... + t^n$ y $M = \langle \{p_0\} \rangle$. Determine el conjunto $M \cap B_{\|\cdot\|}(0,1)$.
- **P4.** Consideremos $\mathcal{M}_{n\times n}(\mathbb{R})$ el espacio de las matrices cuadradas de $n\times n$. Definimos

$$\|\cdot\|_{\mathcal{M}}: \mathcal{M}_{n \times n}(\mathbb{R}) \to \mathbb{R}$$

$$A \mapsto \max_{j=1,\dots,n} \left(\sum_{i=1}^{n} |a_{ij}| \right)$$

- (a) Muestre que $\|\cdot\|_{\mathcal{M}}$ es una norma.
- (b) Muestre que para toda matriz $A \in \mathcal{M}_{n \times n}$ y para todo vector $x \in \mathbb{R}^n$ se cumple que:

$$||Ax||_1 < ||A||_{\mathcal{M}} ||x||_1$$