

$$L \circ T(\lambda_{1} \mathcal{U} + \lambda_{2} \mathcal{V}) = \lambda_{1} L \circ T(\mathcal{U}) + \lambda_{2} L \circ T(\mathcal{V}).$$

En afeto:
Mon $\lambda_{1} \lambda_{2} \in IK$ y $\mathcal{N}_{1} \mathcal{V} \in \mathcal{U}$ indusquiero.
 $\circ T(\lambda_{1} \mathcal{U} + \lambda_{2} \mathcal{V}) = L(T(\lambda_{1} \mathcal{U} + \lambda_{2} \mathcal{V}))$

$\begin{array}{l} \text{Is lined} & \stackrel{7}{=} L\left(\lambda_{1} T(u) + \lambda_{2} T(v)\right) \\ \text{Lestined} & \stackrel{7}{=} \lambda_{1} L(T(u)) + \lambda_{2} L(T(v)) \\ &= \lambda_{1} L(T(u)) + \lambda_{2} L(T(v)) \\ &= \lambda_{1} L \circ T(u) + \lambda_{2} L \circ T(v). \end{array}$

6) de miers, resurs propieded compete:

P.D.Q. $\forall \lambda_1, \lambda_2, \forall \Lambda_7, w \in V, T^{-1}(\lambda_1 v + \lambda_2 w) = \lambda_1 T^{-1}(v) + \lambda_2 T^{-1}(w)$

En efecto: Seon N, WEVY 21, 12 EIK

 $= \lambda_1 \mathcal{U}_1 + \lambda_2 \mathcal{U}_2$ and the $T(u_1) = N \Lambda T(u_2) = W = \lambda_1 T^{-1}(v_1) + \lambda_2 T^{-1}(w)$ ". T⁻¹ estimed hearted on the second second Its read as I and a start of the second away a balanger conceres i tonend at the La Contra de la co

ver pue Jen T C Kan T Ara ME Im Torbitionio P.D.Q. ME Ken T En épecto: como ME Im T, entouces eliste \overline{AUEU} tolgen $T(\overline{AU}) = M$

$$T(T(w)) = T(w)$$

pro T(T(w)) = 0 por hipotesis de la implicancia.

Trindmente. Como Im T & Ker I => T (m) & Ker I OST: T(T(u)) = 0 (=) ToT(u) = 0. To T = 0.

En effeto:

rel 3 hr alth Nuestra hipótesis es que To T = T. Usemo le coratinización de le sume directo: Hey que verpre (Im T N Kent = {o}) (U = ImT + KenT) • Im T A Ker T = LOG 223 LOS A SAIN

En effecto: 21hof E Im TA Kent puer In Ty Kent Agh S.e. V.'s (with the second of <u>E</u> Le ME Le TAKer T. - Como NGKerT => T(u) = 0(1) (1)

- Como $U \in Im T = \mathcal{I} = \mathcal{I} \cup \mathcal{I} \cup \mathcal{I}$ (2)

Reemplozando re en (1) con (2):

T(T(w)) = 0

Pero por hipstesis de la implicancia TOT=T

En particular
$$T(T(w)) = T(w)$$

Pero $T(T(w)) = 0 \implies T(w) = 0$
Juego, usando (2) Setien pre $M=0$
.: In $T \cap Ker T = fof$

Or por doble inclusion: ImTAKerT= 202 • U = Im T + Ken T Lie U & U. Hoy que ver que se puede estilis Como un elemento de la Imagen mos des del Julio de T.

i lomo emperor? Mremor le hipotesis! tenemos que: T(M) = T(T(M))

Luego T(T(u)) - T(u) = 0

Pero Teslineal! Asi: T(T(u) - u) = 0

lugs TIM) - ME Ker T o escrito de monero mos conveniente: 11 - T(re) E Kes T Tenemos a sur elemento "interessute" en el Ker T ¿Nor service? Escribemos 11 como sumo de (11 - T(11)) y algo mos poro completor.

Sorpress ! lo que foltale ero precisamente un elements en la Im T ... Mes escribe como

En effecto:

Somo Jen T = Ker T, en patienden Jen T ⊆ Ker T. Ademor por T.N.J. dim U = dim (Ker T) + dim (Im T) = 2 dim (Ker T)

Hey que verque Im T = Ken T. · Como Im T ⊆ Ken T, Im T er sie. N. de Ken T (No es heresorio prober les demos condiciones

sobre s.e.v.'s puer se sabe que Im Ty Ker T son

C. N. J

Luego:

2 dim (Ken T) = dim (Ken T) + dim (Im T)

dim(KerT) = dim (ImT), setiene que JurT = KerT

Pouto Auvilion 8

$T: IP_2(IR) \longrightarrow IP_4(IR)$

$P \longrightarrow T[p](x) = (x^2 + x + 1)p(x)$

a) P. D. Q. Tes lined

P 2

En effecto: Juan 21,22EIR y PIFEIP2(IR) molesquiero. $T[2_{1}P + \lambda_{2}q](x) = (x^{2} + x + 1)(\lambda_{1}P(x) + \lambda_{2}q(x))$ $= \lambda_1 (x^2 + x + 4) p(x) + \lambda_2 (x^2 + x + 4) f(x)$ $= \lambda_1 T[p](x) + \lambda_2 T[p](x).$

Luego, Tes lined.

6) Para encontror seux losse de KerT, encontremos sen generador primero:

Les $p \in Xer T$ ori: T[p](x) = 0VXEIR $\langle = \rangle (\chi^2 + \chi + 1) \rho(\chi) = 0$ VXEIR. Lugo la min oprion p spre $p \equiv 0$

(=) dim [Im T] = 3

. la losse tiene 3 elementor.

Une lose po ejemplo puede ser:

Tx Tx Tx T[1](x) En effecto, como son polinomios de distinto grado son l.: , ademos los 3 estas en Im T pues

 $T[x^2]$, T[x], $T[i] \in Im T$. Luego como dim Jim T = 3, enlose.

d) · Como Ker T'= Lok, T'es injective

· Como dim Jim T = 3 6 5 = dim 1Py 1 T mo Reserven er epigetive. · Como T no es epigetive, no es ligetive, yps ende no es isomorfismo

Ver

Ponte Amilier 8 $\cdot T : IR^4 \longrightarrow IR^4$ $(1) \cdot T\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ -1 \end{pmatrix} , T\begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}$ Hipotesis $(2) \cdot X_{en} T = I_m T$

Encontror T explicitomente Este tipo de problemos tierre muchos monerces de hererse. Pero la idre es siempre trator de irre por la mos poul. (o al meno una corta). Una menero de parties siempre es descompaniendo T en purciso de la vectores conorieos:

Tes lined

Ohoro, reservor los hipótesis poro osí encontros los volores de TIEI, se encontromos estos yo tendremos a T elplicitamente.

$T \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = 1 \cdot T(e_1) + 1 \cdot T(e_3) = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 3 \end{pmatrix}$ (4)

Tenemos solo 2 eccesiones (31 - 14) pero 4 incognitar (710,1,...,710,1). . falter eccessores. En patiender por (1) Mahernos pre $\begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, f Jun T.

Paropor (2) Im T = Ker T. Ori: $\begin{pmatrix} 0 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} \in Ker T$. Ori: $T\begin{pmatrix} 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \cdot T\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

Rodenos resoluerlos moticialmente, pero en este coro no es peresorio:

Heriendo (6) - (3): $T(c_3) = \begin{pmatrix} 0 \\ -1 \\ 0 \\ 1 \end{pmatrix}$

Usondo esto en (4):

 $T[e_1] = \begin{bmatrix} 1\\ 2\\ 1 \end{bmatrix}$ Mondo esto en (3): $-T(e_2) = \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}$ ne of p to reaches and

Usondo esto en (5):

Poute Amilion 8 P41 T: 123 -> 123 $T \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2B \\ d \\ 0 \end{pmatrix} , T \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ d \\ p \end{pmatrix} , T \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} B \\ d - 1 \\ 0 \end{pmatrix}$ c) Encontros la volore, de d y B t.g. T mo sue

injectivo.

Encontremos les rolores pars que The impedine Rimers, pues ses impedine es mucho mos especifico. Aupongomos T impedine. Como T es impedine $\{U_i\}_{i=1}^3$ esti $\Rightarrow \{T(U_i)\}_{i=1}^3$ est. en potientes: Notes pro $f\left(\frac{1}{2}\right), \begin{pmatrix}0\\-1\\1\end{pmatrix}, \begin{pmatrix}0\\-1\\1\end{pmatrix}, \begin{pmatrix}0\\-1\\1\end{pmatrix}, \begin{pmatrix}0\\-1\\1\end{pmatrix}\}$

es l.c. (trind). Luczo $dT(\frac{1}{2}), T(-\frac{1}{2}), T(\frac{0}{2})$ $dI(\frac{1}{2}), T(\frac{0}{2})$ $dI(\frac{1}{2})$ (=) $\left(\begin{pmatrix} 2 \\ a \end{pmatrix} \right) \left(\begin{pmatrix} 0 \\ a \end{pmatrix} \right) \left(\begin{pmatrix} 0 \\ a \end{pmatrix} \right) \left(\begin{pmatrix} \beta \\ a - 1 \end{pmatrix} \right) \left(\begin{pmatrix} 2 \\ a \end{pmatrix} \right) \left($ Lucz, el sistemo

Une motiz esseide d'Aisterne es:

$\begin{pmatrix} 2\beta & \beta & 0 & 0 \\ 2 & 2 & 1 & 2 & 0 \\ 0 & 0 & \beta & 0 \end{pmatrix}$

(lle este por louvenimie) Le idea es escalones e impores condición de pirotes

(1)

file 1 y 3 nules, luego no hay solucion unico B=0 (ono B=0 podemos excloses (1):

1-2/ Moss (mjerno. Notemos les écuciones del enencie de mencie de son: $-T\begin{pmatrix}1\\1\\1\end{pmatrix}=\begin{pmatrix}0\\1\\0\end{pmatrix}$ $-T\left(\begin{array}{c} 0\\ -1 \end{array}\right) = \left(\begin{array}{c} 0\\ 1 \end{array}\right)$ pad an (zelen value & c) alig $T\left(\begin{array}{c} 0\\ 1\end{array}\right) = \left(\begin{array}{c} 0\\ 0\\ 0\end{array}\right)$ Revelare amelag of 9 and lot 8 Luego (°) E Ker T J (°) E Im T. 1 83 - 1 31 Ademos restando (1) y (21:

=) dim Ker
$$T = 3 - \dim I_m T$$

 $\frac{1}{5} 3 - 1 = 2$

lugo dim Ker T = 21 dim Im T = 1 $\Box \int \left(\begin{array}{c} 0 \\ 1 \end{array} \right) \left(\begin{array}{c} 1 \\ 2 \end{array} \right) \int \left(\begin{array}{c} 1 \end{array} \right) \int \left(\begin{array}{c} 1 \\ 2 \end{array} \right) \int \left(\begin{array}{c} 1 \end{array} \right) \\ \int \left(\begin{array}{c} 1 \end{array} \right) \int \left(\begin{array}{c} 1 \end{array} \right) \int \left(\begin{array}{c} 1 \end{array} \right) \\ \\ \int \left(\begin{array}{c} 1 \end{array} \right) \\ \\ \int \left(\begin{array}{c} 1 \end{array} \right) \\ \\ \\ \int \left(\begin{array}{c} 1 \end{array} \right) \\ \\ \\ \\ \end{array} \right) \int \left(\begin{array}{c} 1 \end{array} \right) \\ \\ \\ \end{array} \right) \\ \\ \\ \end{array} \right) \\ \\ \\ \end{array}$ I (i) i en lon de Im T pres en l.i. j dim Im T = 1

Aubilion 8 Pouto $\frac{P5}{T} : \mathcal{M}_{22} \longrightarrow \mathbb{R}^{4}$ $T(ab) = \begin{bmatrix} a - b \\ b - c \\ c - d \\ d - a \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$

a) P.D.a. Terlined.

En effecto: Note pro $T_1 \begin{bmatrix} c & b \\ c & d \end{bmatrix} = \begin{bmatrix} c \\ b \\ c \\ d \end{bmatrix}$ $y \quad T_2 \begin{bmatrix} c & b \\ c & d \end{bmatrix} = \begin{bmatrix} c \\ c \\ c \\ d \end{bmatrix}$ Non endentemente

lineder, luge come T = TI - Tz, T. er lined puis sume / seste de lineder er lined. * dre monere de serber con la proprieded compete. 6) · Encontremos sure lose del Ker: 10 Poro ero, primero encontremos sur generodos.

. Kert $\leq \langle \langle \langle 1 \rangle \rangle \rangle$ ylomo (1) E Ker T =) $f(\frac{1}{2})$ kend KenT.

i. dim KerT = 1 0.0.7 · Pore Im T, lesenson T.N.I.: dim M22 = dim(KerT) + dim(ImT) 4 = 1 + dim (Im T) (=) or speak paralated (=) diim $(I_m T) = 3$ alper and and ally . Las hoses de Jun 7 tienen 3 elementes Burgerennon 3 demention l-i. poro concluis: $T \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ hips setti and the setter when Voranente 1. c. : and of

 $: \left(\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \right) \left(\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \right) \left(\begin{pmatrix} -1 \\ 0 \\ -1 \end{pmatrix}$ erlore d'Im T, puer er l. i. y dim Im T=3/ c) · T'mo es injectivo pries Ker T = Loy · Como dim/Hzz = dim/124 se tiere prie:

Tingetive (=> Tepigetivo . T mo es opigitio. Roro encontror le moting representante de T </R & los losses de B y C, hay pue evolues

$$1 - T \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = 1 \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} + (-2) \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + 0 \begin{pmatrix} 1 \\ -1 \\ -1 \\ 0 \\ 0 \end{pmatrix} + 1 \begin{pmatrix} 1 \\ -1 \\ 0 \\ -1 \end{pmatrix}$$
Pere los demos :

$$2). T \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = (-1) \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} + 1 \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + (-1) \begin{pmatrix} 1 \\ -1 \\ -1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + 0 \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \\ -1 \end{pmatrix}$$

3)
$$T \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \\ 0 \\ 1 \end{pmatrix} = (-1) \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + 2 \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix} + 0 \begin{pmatrix} 1 \\ -1 \\ -1 \\ 0 \end{pmatrix} + (-1) \begin{pmatrix} 1 \\ -1 \\ 0 \\ -1 \end{pmatrix}$$

4) $T \begin{pmatrix} 1 \\ -1 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \\ -2 \\ 0 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + (-1) \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix} + 2 \begin{pmatrix} 1 \\ -1 \\ -1 \\ 0 \\ 0 \end{pmatrix} + 0 \begin{pmatrix} 1 \\ -1 \\ 0 \\ -1 \end{pmatrix}$

Luego, le motriz representante sere:

