P21 Parta Anvilion - 1 (a) A, B simetricos <u>P.D.Q.</u> A B simetrica (=> AB = BA En effecto:

=> (onno AB es simetrica $AB = (AB)^{t} = B^{t} \cdot A^{t}$ Pero $A = A^{t}$ $B = B^{t}$ por ser A, B simetrices, bueget $B^{t} \cdot A^{t} = BA$ Osi : AB = BA

(=) lesonements la simetria de AyB: $AB = BA = B^{t}A^{t} = (AB)^{t}$ VAyB simetricos

$$\therefore$$
 (one AB = (AB)^t, AB es simetrica

Scanned by CamScanner

(c) Impongamer que N ex invertible, o sue, que cuiste
N⁻¹. Adamér definimers:

$$A := \{k \in IN \mid k \notin k \land N^{k} = 0\}$$

donde le es un entero tel que $N^{h} = 0$, este estiste
pues N es milpotente.
Notor que A es ectado por O, y ademér es mo
vocio ques $h \in A$, lungo posee infimo, y en
posticulor ménimo, ques es un conjunto finito.
Ilemenos \propto el ménimo.
(omo N es investible : $N \cdot N^{-1} = I / N^{d-1} \cdot$
 $=> N^{d} \cdot N^{-1} = N^{d-1}$
Obs: Impusimo que $d \neq 0$, de la contracio $N^{0} = 0$
pero $N^{0} = I$ por definición \times
(omo $d \in A \Rightarrow N^{d} = 0$, Ost : $O = N^{d-1}$
lungo $(d-1) \in A$, pero esto contradice el hecho
que d es ménimo $-X$

(d) $A^{3} + A^{2} + A + I = 0$ P.D.Q. A as invertible En efeto: Por hipotesis: $A^{3} + A^{3} + A + I = 0$ $\implies I = -A^{3} - A^{2} - A$ $\implies I = (-A^{2} - A - I)A = A(-A^{2} - A - I)$ luego definiendo $A^{4} = -A^{3} - A - I$ tenemos gue A es invertible puer $I = A^{4} \cdot A = A \cdot A^{-1}$

Parta Andilion - 1
P2 A, B & Ha, B & A-inferiora
A) P.D.A. AB & A A-inferior
In effects: transmosts per definición, calculanos (AB) i;
para
$$i \leq j$$
:

$$(AB)_{ij} = \sum_{h=i}^{b} (A)_{ih} \cdot (B)_{hj} + \sum_{\substack{h=i\\h \neq i}}^{b} (A)_{ih} \cdot (B)_{hj} + \sum_{\substack{h=i\\i \neq h}}^{b} (A)_{ih} \cdot (B)_{hj} = \sum_{\substack{h=i\\i \neq h}}^{b} (A)_{ih} \cdot (B)_{hj} = 0$$
pues B & A - inferior. Juego:

$$\sum_{\substack{h=i\\h \neq i}}^{b} (A)_{ih} = 0$$
pues A as A - inferior \therefore

$$\sum_{\substack{h=i\\h \neq i}}^{b} (A)_{ih} \cdot (B)_{hj} = 0$$

$$\sum_{\substack{h=i\\h \neq i}}^{b} (A)_{ih} + (B)_{hj} = 0$$

$$\sum_{\substack{h=i\\h \neq i}}^{b} (A)_{ih} + (B)_{hj} = 0$$

$$\sum_{\substack{h=i\\h \neq i}}^{b} (A)_{ih} \cdot (B)_{hj} = 0$$

$$\sum_{\substack{h=i\\h \neq i}}^{b} (A)_{ih} \cdot (B)_{hj} = 0$$

$$\sum_{\substack{h=i\\h \neq i}}^{b} (A)_{ih} - (B)_{hj} = 0$$

$$\sum_{\substack{h=i\\h \neq i}}^{b} (AB)_{ij} = 0 \quad (an i \leq j) = > AB \text{ as } A - inferior$$

Scanned by CamScanner

b) P.D.Q.
$$(AB)_{ii} = (BA)_{ii}$$
 $\forall i = 1...n$
Consequence: Juan i e (1,...,n) orbitraries.
 $(AB)_{ii} = \sum_{h=1}^{n} Q_{ih} \cdot b_{hi} = \left(\sum_{\substack{h=1 \\ h\neq i}}^{n} Q_{ih} \cdot b_{hi}\right) + Q_{ii} \cdot b_{ii}$
 $\begin{pmatrix} (A)_{ih} := Q_{ih} \cdot (B)_{hi} := b_{hi} \end{pmatrix}$

beamer que
$$\sum_{\substack{h=1\\h\neq i}}^{h}$$
 Qih. bh $i = 0$, en effecto, hi

k Li , tendremor que bki = 0 ques B es

$$\Delta$$
-inferior. Por tro lado si iCh aih = 0
pues A es Δ -inferior. Osi, $\forall h \neq i$ aih $b_{ki} = 0$
Osi: $\sum_{\substack{h=1\\h\neq i}}^{h} aih \cdot b_{h}i = 0$

 $(AB)_{ii} = Q_{ii} b_{ii}$

Lucqo, intercombiondo los roles de Ay B (y houendo el
procedimiento identico):
(BA)ii = bii - aii = aii · bii = (AB)ii
$$\forall i=1...r$$

finalizendo lo pedido

Partie Antelie - 1
P3
A os de la forme :
$$A = \begin{pmatrix} A & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Le idre os mon le signiente propieded :
A os invertible $\langle z \rangle A x = b$ tiere refereix inico $\forall belk^{n}$
Estudiento el sistemo $A x = b$:
 $\begin{pmatrix} A & 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} b_{1} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$
 $\langle z \rangle \begin{pmatrix} x_{1} \\ x_{1} + x_{2} \\ x_{1} + x_{2} + \dots + x_{n} \end{pmatrix} = \begin{pmatrix} b_{1} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$
 $\langle z \rangle \begin{pmatrix} x_{1} \\ x_{1} + x_{2} \\ x_{1} + x_{2} + \dots + x_{n} \end{pmatrix} = \begin{pmatrix} b_{1} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$
 $\langle b n \rangle$
 $\langle z \rangle = \begin{pmatrix} x_{1} \\ x_{1} + x_{2} + \dots + x_{n} \end{pmatrix} = \begin{pmatrix} b_{1} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$
 $\langle b n \rangle$
 $\langle z \rangle = \begin{pmatrix} x_{1} \\ x_{1} + x_{2} + \dots + x_{n} \end{pmatrix} = \begin{pmatrix} b_{1} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$
 $\langle b n \rangle$
 $\langle z \rangle = b_{1} - b_{2} - b_{1} - b_{2} - b_{2} - b_{2} - b_{2}$
 $\langle x_{2} = b_{2} - x_{1} = b_{2} - b_{1} - b_{1} - b_{2} - b_{2} - b_{2}$
 $\langle x_{1} = b_{1} - b_{1-1} - \forall i ?$
Nearmon !

definition
$$b_{0:0} = 0$$

los inducción:
 $X_{1} = b_{1} = b_{1} - 0 = b_{1} - b_{0}$
hipólesia: $X_{i} = b_{i} - b_{i-1}$ $\forall i \in \{1, ..., j\}$
P. D. A. $X_{j+1} = b_{j+1} - b_{j}$
En afocto:
Por (1) Johanon que : $X_{i+1} X_{i+1} + X_{i+1} = b_{i+1}$
 $\zeta = \sum_{i=1}^{i} X_{i} = b_{j+1}$
Por b_{ij} Johanon que : $X_{i+1} X_{i+1} + X_{i+1} = b_{i+1}$
 $\zeta = \sum_{i=1}^{i} b_{i} - b_{i-1} + X_{j+1} = b_{j+1}$
 $Talescopico!
 $\zeta = b_{i} - b_{0} + X_{j+1} = b_{j+1}$
 $\zeta = X_{j+1} = b_{j+1} - b_{i}$
 $\therefore \chi$ su define de moneno einico (onco:
 $\chi = \begin{pmatrix} b_{1} - b_{0} \\ b_{2} - b_{1} \\ \vdots \\ b_{n} - b_{n-1} \end{pmatrix}$ (on $b \in IR^{h}$ orbitorios, osc
 A sys invertible$

Pouta Amilion - 1 P4 le escribinos motivielmente el sistema obtenemos: (myo motiz expendido osociado es: $\begin{pmatrix} 1 & 0_{1} & -1 & | & 1 \\ -1 & 0_{1} - 2 & 1 & | & 6 \\ 2 & 2 & 0_{1} - 2 & 0_{1} \end{pmatrix}$ Escolonemos! $f_{2} = f_{2} + f_{1} \qquad (1 \qquad \alpha \\ f_{3} = f_{3} - 2f_{1} \qquad (0 \qquad 2\alpha - 2) \\ 0 \qquad -2\alpha + 2 \qquad (0 \qquad -2\alpha + 2)$ $\begin{array}{c|c}
-1 \\
0 \\
b+1 \\
a \\
a-2
\end{array}$ $f_3 = f_3 + f_2 \begin{pmatrix} 1 & a \\ 0 & 2a - 2 \\ 0 & 0 \end{pmatrix}$ $\begin{array}{c|c} -1 \\ 0 \\ b+1 \\ a \\ a+b-1 \end{array}$

Numper revisionens primers les cors donde hay
Mercien truires pres artes releves identificator:
a) Paro que 3! relucion, les prives tienen que ren
no mulos, es duos:

$$2a-2 \pm 0$$
 $xa \pm 0$ (=> $a \pm 1$ $xa \pm 0$ (#)
 $(xb \in R)$
Paro alpheres les duos corse, recues que para ri alguno d les
condicions (*) no re comple:
 $(abel R)$
Paro alpheres les duos corse, recues que para ri alguno d les
condicions (*) no re comple:
 $(abel A = 0)$
the arte les de 3° file mon dia:
 $0 = b - 1$
• Luego Xi $b \neq 1$, al histeme es intempediable,
 $a = 0$ ano no existe refleción.
• No $b = 1$ lo farcero file en compediable paro are no monigion
 $artement files.$ (on x_0 revised telle)
 $artement files. (and x o revised telle)$
 $bilo 21: -2x_2 = 2 \implies [x_2 = -1]$
 $file L 1: x_1 - x_3 = 1 \implies [x_1 = 1 + x_3]$

Lucgo el vistemo tiene co soluciones dedos por:

$$k_1 = 1 + k_3$$

 $x_2 = -1$
 k_3 (libre
 $\frac{1}{2}$
 $\frac{1}{$