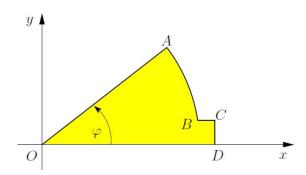
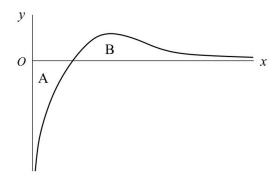
MA1002-4 Cálculo Diferencial e Integral


Profesor: Leonardo Sánchez C. Auxiliar: Marcelo Navarro

fcfm


Trabajo Dirigido

13 de diciembre de 2018

- **P1.** Sea $n \ge 1$ encuentre el centroide de la región entre $f(x) = x^n$ y la recta x = 1. Mueestre que sucede si $n \to \infty$
- **P2.** Un trompo se genera por la rotación en torno al eje OX de la curva OABCD mostrada en la figura

- OA: es un trazo recto inclinado en un ángulo φ ,
- AB: es un arco de circunferencia de radio R y centro en O,
- BC: es un trazo horizontal,
- CD: es un trazo vertical de largo 1, ubicado en x = R + 1.
- a) Escriba, en términos de R y φ , las ecuaciones de las funciones que definen los tramos OA, AB y BC de la curva y encuentre las coordenadas de los puntos A,B y C.
- b) Encuentre el área total de la superficie exterior del trompo.
- **P3.** Probar que el área encerrada por los 2n lazos de $r = a \sin(n\theta)$, con n par es independiente de n. ¿Que sucede para el caso de n impar?
- **P4.** Sea $f:(0,\infty)\to\mathbb{R}$ definida por $f(x)=\frac{\ln(x)}{1+x^2}$ (ver figura). Porbar que las áreas de A y B son finitas e iguales. Indicación: para probar la igualdad, use el cambio de variables y=1/x.

- **P5.** Considere la integral impropia $\int_0^\infty \frac{\cos(x)}{1+x^2} dx$
 - a) Demuestre que la integral es absolutamente convergente.
 - b) Concluya que la integral $\int_{-\infty}^{\infty} \frac{\cos(x)}{1+x^2} dx$ también lo es.

P6. Sea f una función de clase C^2 en [0,1], verificando que f(0)=0. Demuestre que la integral:

$$\int_{0}^{1} f(x) x^{-\frac{3}{2}} dx$$

Converge

P7. Calcular las siguientes integrales:

$$a) \int_{-\infty}^{\infty} e^{x-e^x} dx$$

$$b) \int_{-\infty}^{\infty} \frac{dx}{x^2 + 4}$$

P8. Considere la serie de potencias

$$\phi(x) = \sum_{k=1}^{\infty} \frac{1}{2^k k! (k-1)!} x^k$$

Muestre que $\phi(x)$ tiene radio de convergencia infinito. Argumente por qué entonces ϕ es de clase C^2 y pruebe que satisface la siguiente ecuación integral-diferencial:

$$\int_0^x \phi(t)dt = 2x\phi'(x) - 2\phi(x) \quad \forall x \in \mathbb{R}$$

P9. Considere la serie de potencias $f(x) = \sum_{n \geq 1} \frac{x^n}{ne^n}$

- a) Calcule el radio de convergencia y el intervalo de convergencia
- b) Demuestre que $f'(x) = \frac{1}{e-x}$
- c) Determine f(x) y utilicelo para calcular $\sum_{n\geq 1} \frac{(-1)^n}{n2^n}$