
Introduction
Standard Logit

Non parametric estimation of Mixed Logits
Conclusions
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Introduction

We introduce the Random Coefficient Model (RCM) that
addressed most of the concerns about IIA.

RCM (also called Mixed Logit) allows for correlated shocks to
similar products. Hence, we obtain more realistic patterns of
substitution.

BLP are able to estimate the parameters using market level data
and assuming a known distribution for the consumer heterogeneity.

Today, we cover a non-parametric alternative if you have
individual level data.
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Mixed Logit Model

Standard Logit (or Random Coefficient Model)

The standard Logit considers the following linear utility of consumer i
for the model j in market t :

Uijt = β1(yi − pjt) + xjtβ2 + ξjt + εijt

where yi is consumer’s income, pjt is the price and xjt is the row vector
of K observable characteristics, ξjt is an unobserved scalar product
characteristic, and εijt is a homoscedastic mean-zero stochastic term.
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Mixed Logit Model

Standard Multinomial Logit

Rewrite the utility as follows

Uijt = βzijt + εijt

where zijt summarize all characteristics for products and individuals.
Also β = (β1, β2, γj), summarizes all utility coefficients where γj is the
product dummy or product fixed effect that identifies ξjt when using
individual level data.

Recall that in standard multinomial logit models we assume
homogeneous preferences: same β,∀i
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Mixed Logit Model

Individual Probabilities in Multinomial Logit

Suppose you data on individual i making decisions or choosing between
mutually exclusive products yit = {0, 1, .., J} over time t = {1, .., T},
where option 0 is the outside good.

One can compute the individual probabilities sijt(β):

sijt(β) = Pr(yit = j | β) =
exp(βzijt)

1 +
∑

k exp(βzikt)

Notice that β is not consumer-specific (ie. homogenous consumers)
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Mixed Logit Model

MLE

Define the dummy yijt is one if individual i chose product j at time t
and zero otherwise.

L(β) =

N∏
i=1

T∏
t=1

J∏
j=0

sijt(β)yijt =

N∏
i=1

T∏
t=1

J∏
j=0

(
exp(βzijt)

1 +
∑

k exp(βzikt)

)yijt

Then the estimation will maximize L = lnL(β)

L(β) =

N∑
i=1

T∑
t=1

J∑
j=1

yijt ln

(
exp(βzijt)

1 +
∑

k exp(βzikt)

)
Standard optimization applies to find vector β that maximizes the
objective function. Notice that β is not consumer-specific (ie.
homogenous consumers)
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Mixed Logit Model

Mixed Logit or Random Coefficient Model

The standard Mixed Logit considers the following linear utility of
consumer i for the model j in market t :

Uijt = αi(yi − pjt) + xjtβi + ξjt + εijt

= βizijt + εijt

where yi is consumer’s income, pjt is the price and xjt is the row vector
of K observable characteristics, ξjt is an unobserved scalar product
characteristic, and εijt is a homoscedastic mean-zero stochastic term.

Recall we assume heterogenous preferences: βi is different for each
consumer and zijt contains all the observable characteristics and fixed
effects.
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Mixed Logit Model

Predicted Individual Probabilities

Same as before, if εijt is type I extreme value, the individual
probability is given by:

sijt(βi) = Pr(yit = j | βi) =
exp(βizijt)

1 +
∑J

h=1 exp(βiziht)

Can we write the Log-Likelihood without the distribution of the vector
βi?
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Mixed Logit Model

The mixing distribution of the Random Coefficients

The mixing distribution of the parameters is given by:

βi
iid∼ f

hence, the probability of βi = β depends on the unknown density
function f .

WLOG we assume that this distribution has a finite support S for
random vector βi.
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Mixed Logit Model

Approximating density functions

What do we know about a density function of a random variable with
support S?

Can you see that any density function as just a collection of weights in
the support S?

If we are able to estimate those weights, we have estimated the density
function.
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Mixed Logit Model

Weights

What weights do you need to characterize the following data?

What if we have a random vector with a multivariate distribution?

12/27



Introduction
Standard Logit

Non parametric estimation of Mixed Logits
Conclusions

Non-Parametric Approach

This section heavely relies on Bajari, Fox and Ryan (2007); Train
(2016), Nevo, Turner, Williams (2016) and Fox, Kim and Yang (2016)

The general approach is based on two steps:

1 Simulate many draws, say R, from the random vector βr in a given
support S.

2 Estimate the weights θr for each draw βr that matches the data.
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Fox, Kim and Yang (2016)

Suppose we have K random coefficients, β ∈ RK .

We take a large number of draws, R, of the vector β, denoting each
draw by βr. Draws are taken from a grid already chosen.

The probability, srij , that individual i chooses product j given a
particular draw βr is given by:

srij = sij(β
r) = Pr(yi = j | βr) =

exp(βrzij)

1 +
∑J

h=1 exp(βrzih)

For simplicity, we suppress the subscript t as this approach does not
exploit the time variation.
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Expected Value

What is the expected probability that individual i chooses product j, ,
E(sij)?

E(sij) =

∫
sij(β)dF (β)

Let us denote by θr the weight for draw βr. Obviously,
∑R

r=1 θ
r = 1

and 0 ≤ θr ≤ 1, ∀r. Therefore:

Ê(sij) =

R∑
r=1

θrsij(β
r)
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First Stage Simulation

Take a large number, R of draws of vector βr

Compute a large set of conditional probabilities

srij =
exp(βrzij)

1 +
∑J

h=1 exp(βrzih)

You will have a large R× 1 vector of simulated probabilities srij .
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Second Stage Optimization

Estimate of the unknown vector of weights, denoted by θ̂, given by:

θ̂ = arg min
θ∈RR

1

NJ

N∑
i=1

J∑
j=1

(
yij −

R∑
r=1

θrsrij

)2

(1)

subject to:
R∑
r=1

θr = 1 (2)

0 ≤ θr ≤ 1, ∀r (3)

where the dummy yij is one if individual i chose product j and zero
otherwise.
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Comments on Second Stage

θ̂ = arg min
θ∈RR

1

NJ

N∑
i=1

J∑
j=1

(
yij −

R∑
r=1

θrsrij

)2

(4)

subject to:
R∑
r=1

θr = 1 (5)

0 ≤ θr ≤ 1, ∀r (6)

Notice that in this stage the values srij are given and never
recalculated.

To estimate just need the observed dummy yij and the R× 1 vector of
simulated probabilities srij .
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Advantages

The advantage of using a logit model for the mixing distribution is that
it allows for easy and flexible specification of relative probabilities.

The researcher just need to specify the support for the draws and the
positive weights will describe the shape of the distribution (the
constrained optimization guarantees positive probability at each point
and the sum in the denominator sum to one over points.)

The specification is entirely general in the sense that any choice model
with any mixing distribution can be approximated to any degree of
accuracy by a model presented above.
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Optimization Tip

Can you see that the optimization resembles an OLS estimation?

θ̂ = arg min
θ∈RR

1

NJ

N∑
i=1

J∑
j=1

(
yij −

R∑
r=1

θrsrij

)2

You could run a constrained OLS regression just ensuring the

non-negativity constraints 0 ≤ θr∀r.

Afterwards you can divide each estimated coefficient by the sum of all
the positive coefficients, meeting all the constraints by construction.
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Non Standard MLE as in Train (2016)

Suppose the person i made a sequence of chosen alternatives in T
periods denoted by subscripts j1, .., jt, .., jT . The probability that
person i made this sequence of choices, conditional on βr, is:

Li(β
r) =

T∏
t=1

J∏
j=1

sijt(β
r)yijt =

T∏
t=1

J∏
j=1

(
exp(βrzijt)

1 +
∑J

h=1 exp(βrziht)

)yijt
Notice that Li(βr) does not depend on the weight θr.
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Unconditional Choice Probabilities

The Unconditional Choice Probabilities (or expected value) that
individual i chooses that particular sequence is Pi:

Pi(θ) =
∑
r∈S

θrLi(β
r)

Notice that we have integrated out over distribution of β. The
probability is only a function of θ, the weights of the mixing
distribution.
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The simulated log-likelihood function for θ given a sample of
individuals indexed by i = {1, .., N} is:

SLL(θ) =

N∑
i=1

ln {Pi(θ)} =

N∑
i=1

ln

{∑
r∈S

Li(βr)θ
r

}
subject to:

R∑
r=1

θr = 1

0 ≤ θr ≤ 1, ∀r

The log-likelihood function can be simulated in the usual way by using
random draws of βr for each person.
However, the objective function is very non-linear.
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Method of Moments as in NTW (2016)

A straightforward generalization can be:

θ̂ = arg min
θ∈RR

mk(θ)
′V̂ −1mk(θ)

subject to:
R∑
r=1

θr = 1

0 ≤ θr ≤ 1, ∀r

where mj(θ) is a discrepancy between a moment observed in the data
and the moment predicted by the model.
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Moments as in NTW (2016)

Suppose we observed expenditure for each individual, Ei, and we have
a structural model to predict expenditures given coefficients βr,
denoted by Ei(β

r). Hence, formally, mj(θ) = m̂dat
k −mmod

k θ, where:

m̂dat is the vector of moments recovered from the data, for
example Average Expenditure: E = 1

N

∑
iEi.

mmod
k θ =

∑
r θ

rEi(β
r) is a weighted average of the moments

predicted by the model, predicted expenditure in this example

V̂ −1 is a weighting matrix, that we know there is an optimal
weighting matrix derived by Hansen (1982) for GMM.
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On the Optimality of Halton Sequences

A natural starting point for a grid in RK is a uniform grid.

Also, you can have a draw from uniform distributions in RK

However, there are more efficient draws to ensure a better
coverage, i.e., better accuracy of the integral given a fixed number
of points

The Halton sequences based on prime numbers is easy and very
powerful to use. See Train’s book.
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Conclusions

We have covered a cutting edge estimation technique to estimate
Mixed Logit when individual level data are available.

This approach allows us to explore non-parametric estimation of
the mixing distribution of parameters.

We have reached the frontier on non-parametric approaches to
demand estimation of differentiated products.
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