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Introduction

We have introduced the discrete choice models as an alternative to
the simple linear demand system that suffers from the too many
parameters problem.

Instead, using the consumer maximization problem and certain
functional forms, elasticities can be constructed using fewer
parameters.

A terrible implication of the iid assumption in the logit model is
the Independence of Irrelevant Alternatives (IIA) that has no
economic background.

We need to allow correlation for the idiosyncratic shocks of similar
products in order to have more realistic patterns of substitution.

We introduce the Random Coefficient Model that addressed most
of the concerns about IIA while using aggregated market shares.
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Mixed Logit or Random Coefficient Model a la BLP

Mainly developed by Berry, Levinsohn and Pakes (1995) and Berry
(1994).

The standard model considers the following linear utility of consumer i
for the model j in market t :

Uijt = αi(yi − pjt) + xjtβi + ξjt + εijt

where yi is consumer’s income, pjt is the price and xjt is the row vector
of K observable characteristics, ξjt is an unobserved scalar product
characteristic, and εijt is a homoscedastic mean-zero stochastic term.

Same as before but now HETEROGENOUS CONSUMERS!!! Notice
the subscripts (αi, βi)!!.
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Random Coefficients

Notice the subscript i in the coefficients:

Uijt = αi(yi − pjt) + xjtβi + ξjt + εijt

αi is the random coefficient that is individual specific and represents
consumer i’s marginal utility of income.

The marginal utility parameter vary across consumers but not across
products for given a individual.
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Random Coefficients

The distribution of the idiosyncratic parameter αi is given by:(
αi
βi

)
=

(
α
β

)
+ Γwi + Σvi where vi ∼ N (0K+1, IdK+1)

where vi is distributed as a standard normal shock and captures the
unobservable consumer heterogeneity in price sensitivity. Also it could
include some demographics wi. For simplicity assume Γ = 0.

Although every individual has a different draw of coefficients (αi, βi),
we will estimate the unknown parameters from the parametric
distribution (not individual coefficients).

Define θ = (α, β,Σ) as the vector containing all the parameters of the
model.
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Predicted Market Shares

The next step is to build the market shares consistent with this
framework.

Market share sjt of the product j is just an integral over the mass of
consumers who choose model j (Ajt), that depends on random
variables ε = (εi0t, .., εiJt) and the individual shock vi.

Thus,

sjt(xt,pt, ξt; θ) =

∫
Ajt

dFε(ε|vi)dΦ(vi) =

∫
Ajt

sijtdΦ(vi)
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Predicted Individual Probabilities

The standard assumption is that ε is i.i.d.with Type I extreme value
distribution, so we have a closed form for the individual probability sijt:

sijt =
exp(−αipjt + xjtβi + ξjt)

1 +
∑J

h exp(−αipht + xhtβi + ξht)

Same expression as before but now it includes individual coefficients
(αi, βi).
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Predicted Individual Probabilities

We replace (αi, βi) in terms of the common parameters (α, β,Σ):

−αipjt + xjtβi + ξjt = −αpjt + xjtβ + ξjt + [−pjt, xjt] Σvi︸︷︷︸
ṽi

Notice that the shocks are not iid anymore. As long as Σ is not zero, ṽi
allows for correlation associated to characteristics [−pjt, xjt].

For a given individual i, a larger αi (or βi) will be common to all
products providing a larger rate of substitution between similar
products (with similar [−pjt, xjt]).
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Predicted Individual Probabilities

Using the expressions above, the individual probability is given by:

sijt =
exp(−αipjt + xjtβi + ξjt)

1 +
∑J

h exp(−αipht + xhtβi + ξht)

=
exp(−αpjt + xjtβ + ξjt + [−pjt, xjt]Σvi)

1 +
∑J

h exp(−αpht + xhtβ + ξht + [−pht, xht]Σvi)

However, we only observed market shares aggregated at market level.
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Market Shares based on Individual Probabilities

And the market shares are given by:

sjt(xt,pt, ξt; θ) =

∫
Ajt

exp(−αpjt + xjtβ + ξjt + [−pjt, xjt]Σvi)dΦ(vi)

1 +
∑J

h exp(−αpht + xhtβ + ξht + [−pht, xht]Σvi)

How to compute this awful integral?

The non-analytical integral over the individual shocks vi is computed
through simulation (We’ll see this soon).

The unobservable characteristic ξt is the only unobservable that
explains an imperfect fit with the actual market shares,
playing the role of residual.
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Integral by Simulations

Suppose you need to compute the following integral:

s =

∫
g(x)dF (x)

There are several methods (quadrature, etc). Simulations are very
simple. Choose a number of simulations R. Take R draws from F and
evaluate the average of the draws evaluated in function g.

s =
1

R

R∑
i=1

g(xi)
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Example 1 of Integral by Simulations

Suppose you need to compute the following single-dimensional integral:

s =

∫
xdΦ(x) =

∫
xφ(x)dx

Choose a number of simulations R = 1000. Take 1000 draws from a
standard normal distribution (x1, x2, .., x1000). Take the average of the
terms:

ŝ =
1

1000

1000∑
i=1

xi

This is just the estimator of the expected value of a standard normal,
E(x) =

∫
xφ(x)dx .

Can you see it? Does it make sense to you?
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Example 2 of Integral by Simulations

Suppose you need to compute the following integral:

s =

∫
x2dΦ(x) =

∫
x2φ(x)dx

Choose a number of simulations R = 1000. Take 1000 draws from a
standard normal distribution (x1, x2, .., x1000). Get the 1000 values of
each draw squared (x2

1, x
2
2, .., x

2
1000). Take the average of the squared

terms:

ŝ =
1

1000

1000∑
i=1

x2
i

Make the link with the variance. Compute
∫

tan(log(x6))φ(x)dx

Who needs primitive functions anymore!!
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BLP Estimation

The estimates that rationalize the data is the vector θ̂ such that:

θ̂ = arg min
θ∈Θ
‖sjt(xt,pt, ξt; θ)− sjt‖

However:

The straightforward idea of matching predicted and observed
market shares is unfeasible since ξ’s are not observable and most
variables enter in a non-linear fashion.

To overcome this issue Berry (1994) and BLP (1995) developed an
iterative process, in which the problem is linearized in ξ.
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BLP Estimation

After the problem is linearized in ξ, we follow a standard
instrumental variables estimation to feed a GMM estimation.

How to deal with the endogeneity problem? BLP suggested a set
of instruments based on the characteristics of the competitors and
within the same producer.

Why these characteristics are good instruments? Based on models
of differentiated products, markups are correlated with the
distance of competitors in the product space. Are these
characteristics correlated with ξjt?
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Notation

Let us put together α and β inside of β to ease notation

So now βK+1,1 is the vector of the K + 1 linear parameters and Σ is the
cholesky decomposition of the variance covariance matrix of the new β.

The variance-covariance matrix ΣΣ′ has dimension (K + 1)× (K + 1).
The symmetric matrix have at most (K + 1)K/2 parameters.
Nevertheless, most covariances are set to zero for simplicity.
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General Strategy

I summarize the three step procedure to estimate parameters as
follows:

1 Given an initial value of Σ0, find vector δ(Σ) of product-specific
constants, called “mean utility” (Simulation Stage).

2 Use δ(Σ) to estimate β(δ(Σ)) = β(Σ) (IV Stage).

3 Compute GMM objective function G(Σ, δ, β) = G(Σ). Find Σ̂ that
minimizes G(Σ). (GMM Stage).
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Simulation Stage: Finding deltas from Sigmas...

In order to find the “mean utility” vector δ(Σ), I need to compute the
predicted market shares sj for a given matrix Σ0.

Recall that:

v ∼ N (0, Id)⇒ Σv︸︷︷︸
ṽ

∼ N (0,ΣΣ′)

Let us generate correlated shocks, ṽ, starting from iid shocks v.
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Finding deltas from Sigmas...

We simulate R artificial consumers (that eventually can also include
demographics).

So, let us draw shocks v from the K random coefficients for each of the
R consumers:

ṽK+1×R = ΣK+1×K+1 · vK+1×R

So we denote by ṽi with i = {1, .., R}, the ith column of ṽ that is a
(K + 1)× 1 vector of multivariate normal distribution with
variance-covariance ΣΣ′.
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Finding deltas from Sigmas to Predict Market Shares

Choose an arbitrary initial value for δ.
Compute the vector of predicted market shares, s, simulating the
consumers as follows:

sj(Σ, δ) =
1

R

R∑
i=1

[
exp(δj + ˜̃vji)

1 +
∑J

h=1 exp(δh + ˜̃vhi)
]

where ˜̃vji = [−pjt, xjt]1×K+1ṽi, and ṽi is a (K + 1) column vector with
the taste shocks of individual i (the ith column of ṽ)
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Updating deltas

Strictly speaking to find an acceptable value of δ, I need to solve the J
by J non linear system to match predicted, s(δ,Σ) and actual shares,
s, for each market:

s(δ,Σ) = s

for each given Σ.

Instead, BLP (1995) proved that we can use a recursive procedure to
find the unique δ that ensures the predicted market shares to match
the observed market shares (for a given Σ) (based on a Contraction
mapping theorem.)
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Contraction mapping theorem in BLP

Given a initial value of δ0, the recursive formula to find the next round
δ is given by:

δh+1 = δh + ln(s)− ln(s(Σ, δh))

Given an arbitrary small tolerance parameter, this procedure converges
to the unique fixed point δ(Σ) that matches predicted and actual
market shares.

It is very usual to start using the deltas consistent with the simplest
logit: δ0 = ln(s/s0), where s and s0 are the vector of market shares of
each product and the market share of the outside good respectively.
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IV Stage : Finding betas

After obtaining the an acceptable δ(Σ), we now turn to estimate the
vector β(Σ). For that, we just need to run a simple instrumental
variable regression as follows:

δ(Σ) = Xβ + ξ

with the moment condition that E(Z ′ξ) = 0 for suitable instruments
ZN×J with J ≥ K + 1. Recall that X contains price, as is the extended
matrix of characteristics.
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IV Stage : Finding betas

The standard IV estimation lead us to:

β̂(Σ) =
(
X ′Z(Z ′Z)−1Z ′X

)−1
X ′Z(Z ′Z)−1Z ′δ(Σ)

where it is very usual to use the optimal weighting matrix
WT = (Z ′Z)−1, that minimizes the asymptotic variance.
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GMM Stage: Updating Sigma through a GMM
estimation

Given Σ, compute the residuals ξ as follows:

ξ(Σ) = δ(Σ)−Xβ̂(Σ)

Hence, Σ̂ is:

Σ̂ = arg min
Σ∈Θ

ξ(Σ)′Z(Z ′Z)−1Z ′ξ(Σ)

where Θ is the set of feasible cholesky decompositions of a positive
definite matrix.
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Redo the procedure

Most optimization routines will start with Σ0 and will update for a
new Σ̂, and then you have to redo the same procedure until the change
in the GMM objective function or the changes in Σ̂ are as small as you
want.

It is crucial to keep the vector of draws, v, fixed during the estimation
procedure to reach convergence. Still, a very complex optimization.
Nevo (2001) shows the ugly formula for the standard deviations of the
coefficients involved, which is a particular case of GMM.
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Logit vs BLP

Logit Utility:

Uijt = α(yi − pjt) + xjtβ + ξjt + εijt

IV Regression ⇒ log

(
sjt
s0t

)
= −αpjt + xjtβ + ξjt

Mixed Logit Utility:

Uijt = αi(yi − pjt) + xjtβi + ξjt + εijt

Simulation +IV+ GMM ⇒ min
θ∈Θ
‖sjt(xt,pt, ξt; θ)− sjt‖

where sjt is the observed market shares and sjt(xt,pt, ξt; θ) are the
predicted market shares:

sjt(xt,pt, ξt; θ) =

∫
Ajt

exp(−αpjt + xjtβ + ξjt + [−pjt, xjt]Σvi)dΦ(vi)

1 +
∑

h exp(−αpht + xhtβ + ξht + [−pht, xht]Σvi)
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Logit vs BLP: Own price elasticities

Logit Own Price elasticities:

∂sjt(pt)

∂pjt
=

∂sjt(pt)

∂δjt

∂δjt
∂pjt

= sjt(1− sjt)(−α)

⇒ εLjj =
∂sjt(pt)

∂pjt

pjt
sjt

= −αpjt(1− sjt)

BLP Own Price Elasticities: BLP is a mixture of heterogenous
logit consumers, hence it is not surprising that the own price
elasticities are given by:

εBLPjj ≡ ∂sjt
∂pjt

pjt
sjt

= −pjt
sjt

∫
|αi|sijt(1− sijt)dΦ(vi)

Using our R simulated consumers, we can estimate the own price
elasticity as follows:

ε̂BLPjj = −pjt
sjt

1

R

R∑
i=1

|αi|ŝijt(1− ŝijt)
29/31



Introduction
Random Coefficient Model a la BLP

Conclusions

Mixed Logit Model
Integral by Simulations
BLP Estimation

Logit vs BLP: Cross price elasticities

Logit Cross price elasticities:

∂sjt(pt)

∂pkt
=
∂sjt(pt)

∂δkt

∂δkt
∂pkt

= sjtsktα

⇒ εLjk =
∂sjt
∂pkt

pkt
sjt

= αpktskt

Mixed logits or BLP Cross Price Elasticities:

εBLPjk ≡ ∂sjt
∂pkt

pkt
sjt

= −pkt
sjt

∫
|αi|sijtsiktdΦ(vi)

Obviously: ε̂BLPjj = −pkt
sjt

1
R

∑R
i=1 |αi|ŝijtŝikt

Why IIA is less problematic in the BLP framework?
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Conclusions

We have covered the famous BLP model to estimate a demand for
differentiated products. Huge improvement in comparison with
previous models.

Still, it has several limitations as it is static and characteristics are
required to be exogenous.

Next class will cover applications that include the supply side of
the market to compute welfare and counterfactual exercises.
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