ORGANIZACIÓN INDUSTRIAL EMPÍRICA IN7E0

Carlos Noton

Clase 5 - Martes 14 de Agosto Primavera - 2018

Outline

2 Random Coefficient Model a la BLP

- Mixed Logit Model
- Integral by Simulations
- BLP Estimation

3 Conclusions

Introduction

- We have introduced the discrete choice models as an alternative to the simple linear demand system that suffers from the *too many* parameters problem.
- Instead, using the consumer maximization problem and certain functional forms, elasticities can be constructed using fewer parameters.
- A terrible implication of the iid assumption in the logit model is the Independence of Irrelevant Alternatives (IIA) that has no economic background.
- We need to allow correlation for the idiosyncratic shocks of similar products in order to have more realistic patterns of substitution.
- We introduce the Random Coefficient Model that addressed most of the concerns about IIA while using aggregated market shares.

Mixed Logit or Random Coefficient Model a la BLP

Mainly developed by Berry, Levinsohn and Pakes (1995) and Berry (1994).

The standard model considers the following linear utility of consumer i for the model j in market t:

$$U_{ijt} = \alpha_i(y_i - p_{jt}) + x_{jt}\beta_i + \xi_{jt} + \varepsilon_{ijt}$$

where y_i is consumer's income, p_{jt} is the price and x_{jt} is the row vector of K observable characteristics, ξ_{jt} is an unobserved scalar product characteristic, and ε_{ijt} is a homoscedastic mean-zero stochastic term.

Same as before but now HETEROGENOUS CONSUMERS!!! Notice the subscripts (α_i, β_i) !!.

Mixed Logit Model Integral by Simulations BLP Estimation

Random Coefficients

Notice the subscript i in the coefficients:

$$U_{ijt} = \alpha_i(y_i - p_{jt}) + x_{jt}\beta_i + \xi_{jt} + \varepsilon_{ijt}$$

 α_i is the random coefficient that is individual specific and represents consumer *i*'s marginal utility of income.

The marginal utility parameter vary across consumers but not across products for given a individual.

Mixed Logit Model Integral by Simulations BLP Estimation

Random Coefficients

The distribution of the idiosyncratic parameter α_i is given by:

$$\begin{pmatrix} \alpha_i \\ \beta_i \end{pmatrix} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} + \Gamma w_i + \Sigma v_i \quad \text{where} \quad v_i \sim \mathcal{N}(0_{K+1}, Id_{K+1})$$

where v_i is distributed as a standard normal shock and captures the unobservable consumer heterogeneity in price sensitivity. Also it could include some demographics w_i . For simplicity assume $\Gamma = 0$.

Although every individual has a different draw of coefficients (α_i, β_i) , we will estimate the unknown parameters from the parametric distribution (not individual coefficients).

Define $\theta = (\alpha, \beta, \Sigma)$ as the vector containing all the parameters of the model.

Mixed Logit Model Integral by Simulations BLP Estimation

Predicted Market Shares

The next step is to build the market shares consistent with this framework.

Market share s_{jt} of the product j is just an integral over the mass of consumers who choose model j (A_{jt}) , that depends on random variables $\varepsilon = (\varepsilon_{i0t}, ..., \varepsilon_{iJt})$ and the individual shock v_i .

Thus,

$$s_{jt}(\mathbf{x}_t, \mathbf{p}_t, \xi_t; \theta) = \int_{A_{jt}} dF_{\varepsilon}(\varepsilon | v_i) d\Phi(v_i) = \int_{A_{jt}} s_{ijt} d\Phi(v_i)$$

Mixed Logit Model Integral by Simulations BLP Estimation

Predicted Individual Probabilities

The standard assumption is that ε is i.i.d. with Type I extreme value distribution, so we have a closed form for the individual probability s_{ijt} :

$$s_{ijt} = \frac{\exp(-\alpha_i p_{jt} + x_{jt} \beta_i + \xi_{jt})}{1 + \sum_h^J \exp(-\alpha_i p_{ht} + x_{ht} \beta_i + \xi_{ht})}$$

Same expression as before but now it includes individual coefficients (α_i, β_i) .

Mixed Logit Model Integral by Simulations BLP Estimation

Predicted Individual Probabilities

We replace (α_i, β_i) in terms of the common parameters (α, β, Σ) :

$$-\alpha_i p_{jt} + x_{jt} \beta_i + \xi_{jt} = -\alpha p_{jt} + x_{jt} \beta + \xi_{jt} + [-p_{jt}, x_{jt}] \underbrace{\sum v_i}_{\widetilde{v}_i}$$

Notice that the shocks are not *iid* anymore. As long as Σ is not zero, \tilde{v}_i allows for correlation associated to characteristics $[-p_{jt}, x_{jt}]$.

For a given individual i, a larger α_i (or β_i) will be common to all products providing a larger rate of substitution between similar products (with similar $[-p_{jt}, x_{jt}]$).

Mixed Logit Model Integral by Simulations BLP Estimation

Predicted Individual Probabilities

Using the expressions above, the individual probability is given by:

$$s_{ijt} = \frac{\exp(-\alpha_i p_{jt} + x_{jt} \beta_i + \xi_{jt})}{1 + \sum_h^J \exp(-\alpha_i p_{ht} + x_{ht} \beta_i + \xi_{ht})}$$
$$= \frac{\exp(-\alpha p_{jt} + x_{jt} \beta + \xi_{jt} + [-p_{jt}, x_{jt}] \Sigma v_i)}{1 + \sum_h^J \exp(-\alpha p_{ht} + x_{ht} \beta + \xi_{ht} + [-p_{ht}, x_{ht}] \Sigma v_i)}$$

However, we only observed market shares aggregated at market level.

Market Shares based on Individual Probabilities

And the market shares are given by:

$$s_{jt}(\mathbf{x}_t, \mathbf{p}_t, \xi_t; \theta) = \int_{A_{jt}} \frac{\exp(-\alpha p_{jt} + x_{jt}\beta + \xi_{jt} + [-p_{jt}, x_{jt}]\Sigma v_i)d\Phi(v_i)}{1 + \sum_h^J \exp(-\alpha p_{ht} + x_{ht}\beta + \xi_{ht} + [-p_{ht}, x_{ht}]\Sigma v_i)}$$

How to compute this awful integral?

The non-analytical integral over the individual shocks v_i is computed through simulation (We'll see this soon).

The unobservable characteristic ξ_t is the only unobservable that explains an imperfect fit with the actual market shares, playing the role of residual.

Mixed Logit Model Integral by Simulations BLP Estimation

Integral by Simulations

Suppose you need to compute the following integral:

$$s = \int g(x) dF(x)$$

There are several methods (quadrature, etc). Simulations are very simple. Choose a number of simulations R. Take R draws from F and evaluate the average of the draws evaluated in function g.

$$s = \frac{1}{R} \sum_{i=1}^{R} g(x_i)$$

Example 1 of Integral by Simulations

Suppose you need to compute the following single-dimensional integral:

$$s = \int x d\Phi(x) = \int x \phi(x) dx$$

Choose a number of simulations R = 1000. Take 1000 draws from a standard normal distribution $(x_1, x_2, ..., x_{1000})$. Take the average of the terms:

$$\widehat{s} = \frac{1}{1000} \sum_{i=1}^{1000} x_i$$

This is just the estimator of the expected value of a standard normal, $E(x)=\int x\phi(x)dx$.

Can you see it? Does it make sense to you?

Example 2 of Integral by Simulations

Suppose you need to compute the following integral:

$$s = \int x^2 d\Phi(x) = \int x^2 \phi(x) dx$$

Choose a number of simulations R = 1000. Take 1000 draws from a standard normal distribution $(x_1, x_2, ..., x_{1000})$. Get the 1000 values of each draw squared $(x_1^2, x_2^2, ..., x_{1000}^2)$. Take the average of the squared terms:

$$\widehat{s} = \frac{1}{1000} \sum_{i=1}^{1000} x_i^2$$

Make the link with the variance. Compute $\int \tan(\log(x^6))\phi(x)dx$

Who needs primitive functions anymore!!

BLP Estimation

The estimates that rationalize the data is the vector $\hat{\theta}$ such that:

$$\widehat{\theta} = \arg\min_{\theta\in\Theta} \|s_{jt}(\mathbf{x}_t, \mathbf{p}_t, \xi_t; \theta) - s_{jt}\|$$

However:

- The straightforward idea of matching predicted and observed market shares is unfeasible since ξ 's are not observable and most variables enter in a non-linear fashion.
- To overcome this issue Berry (1994) and BLP (1995) developed an iterative process, in which the problem is linearized in ξ .

Introduction Mixed Logit Model Random Coefficient Model a la BLP Integral by Simulations Conclusions BLP Estimation

BLP Estimation

- After the problem is linearized in ξ , we follow a standard instrumental variables estimation to feed a GMM estimation.
- How to deal with the endogeneity problem? BLP suggested a set of instruments based on the characteristics of the competitors and within the same producer.
- Why these characteristics are good instruments? Based on models of differentiated products, markups are correlated with the distance of competitors in the product space. Are these characteristics correlated with ξ_{jt} ?

Let us put together α and β inside of β to ease notation

So now $\beta_{K+1,1}$ is the vector of the K+1 linear parameters and Σ is the cholesky decomposition of the variance covariance matrix of the new β .

The variance-covariance matrix $\Sigma\Sigma'$ has dimension $(K + 1) \times (K + 1)$. The symmetric matrix have at most (K + 1)K/2 parameters. Nevertheless, most covariances are set to zero for simplicity.

General Strategy

I summarize the three step procedure to estimate parameters as follows:

- Given an initial value of Σ₀, find vector δ(Σ) of product-specific constants, called "mean utility" (Simulation Stage).
- **2** Use $\delta(\Sigma)$ to estimate $\beta(\delta(\Sigma)) = \beta(\Sigma)$ (**IV Stage**).
- Compute GMM objective function G(Σ, δ, β) = G(Σ). Find Σ̂ that minimizes G(Σ). (GMM Stage).

Simulation Stage: Finding deltas from Sigmas...

In order to find the "mean utility" vector $\delta(\Sigma)$, I need to compute the predicted market shares s_i for a given matrix Σ_0 .

Recall that:

$$v \sim \mathcal{N}(0, Id) \Rightarrow \underbrace{\Sigma v}_{\widetilde{v}} \sim \mathcal{N}(0, \Sigma \Sigma')$$

Let us generate correlated shocks, \tilde{v} , starting from *iid* shocks v.

Finding deltas from Sigmas...

We simulate R artificial consumers (that eventually can also include demographics).

So, let us draw shocks v from the K random coefficients for each of the R consumers:

$$\widetilde{v}_{K+1 \times R} = \Sigma_{K+1 \times K+1} \cdot v_{K+1 \times R}$$

So we denote by \tilde{v}_i with $i = \{1, ..., R\}$, the i^{th} column of \tilde{v} that is a $(K+1) \times 1$ vector of multivariate normal distribution with variance-covariance $\Sigma \Sigma'$.

Introduction Mixed Logit Model Random Coefficient Model a la BLP Integral by Simulations Conclusions BLP Estimation

Finding deltas from Sigmas to Predict Market Shares

Choose an arbitrary initial value for δ .

Compute the vector of predicted market shares, s, simulating the consumers as follows:

$$s_j(\Sigma, \delta) = \frac{1}{R} \sum_{i=1}^{R} \left[\frac{\exp(\delta_j + \widetilde{\widetilde{v}}_{ji})}{1 + \sum_{h=1}^{J} \exp(\delta_h + \widetilde{\widetilde{v}}_{hi})} \right]$$

where $\widetilde{\widetilde{v}}_{ji} = [-p_{jt}, x_{jt}]_{1 \times K+1} \widetilde{v}_i$, and \widetilde{v}_i is a (K+1) column vector with the taste shocks of individual i (the i^{th} column of \widetilde{v})

Introduction Mixed Logit Model Random Coefficient Model a la BLP Integral by Simulations Conclusions BLP Estimation

Updating deltas

Strictly speaking to find an acceptable value of δ , I need to solve the J by J non linear system to match predicted, $s(\delta, \Sigma)$ and actual shares, s, for each market:

$$s(\delta, \Sigma) = s$$

for each given Σ .

Instead, BLP (1995) proved that we can use a recursive procedure to find the unique δ that ensures the predicted market shares to match the observed market shares (for a given Σ) (based on a Contraction mapping theorem.)

Contraction mapping theorem in BLP

Given a initial value of δ_0 , the recursive formula to find the next round δ is given by:

$$\delta^{h+1} = \delta^h + \ln(s) - \ln(s(\Sigma, \delta^h))$$

Given an arbitrary small tolerance parameter, this procedure converges to the unique fixed point $\delta(\Sigma)$ that matches predicted and actual market shares.

It is very usual to start using the deltas consistent with the simplest logit: $\delta_0 = \ln(s/s_0)$, where s and s_0 are the vector of market shares of each product and the market share of the outside good respectively.

Introduction Mixed Logit Mo Random Coefficient Model a la BLP Integral by Simu Conclusions BLP Estimation

IV Stage : Finding betas

After obtaining the an acceptable $\delta(\Sigma)$, we now turn to estimate the vector $\beta(\Sigma)$. For that, we just need to run a simple instrumental variable regression as follows:

$$\delta(\Sigma) = X\beta + \xi$$

with the moment condition that $\mathbb{E}(Z'\xi) = 0$ for suitable instruments $Z_{N \times J}$ with $J \geq K + 1$. Recall that X contains price, as is the extended matrix of characteristics.

Mixed Logit Model Integral by Simulations BLP Estimation

IV Stage : Finding betas

The standard IV estimation lead us to:

$$\widehat{\beta}(\Sigma) = \left(X'Z(Z'Z)^{-1}Z'X \right)^{-1} X'Z(Z'Z)^{-1}Z'\delta(\Sigma)$$

where it is very usual to use the optimal weighting matrix $W_T = (Z'Z)^{-1}$, that minimizes the asymptotic variance.

GMM Stage: Updating Sigma through a GMM estimation

Given Σ , compute the residuals ξ as follows:

$$\xi(\Sigma) = \delta(\Sigma) - X\widehat{\beta}(\Sigma)$$

Hence, $\widehat{\Sigma}$ is:

$$\widehat{\Sigma} = \arg\min_{\Sigma \in \Theta} \xi(\Sigma)' Z(Z'Z)^{-1} Z' \xi(\Sigma)$$

where Θ is the set of feasible cholesky decompositions of a positive definite matrix.

Mixed Logit Model Integral by Simulations BLP Estimation

Redo the procedure

Most optimization routines will start with Σ_0 and will update for a new $\widehat{\Sigma}$, and then you have to redo the same procedure until the change in the GMM objective function or the changes in $\widehat{\Sigma}$ are as small as you want.

It is crucial to keep the vector of draws, v, fixed during the estimation procedure to reach convergence. Still, a very complex optimization. Nevo (2001) shows the ugly formula for the standard deviations of the coefficients involved, which is a particular case of GMM.

Logit vs BLP

Logit Utility:

$$U_{ijt} = \alpha(y_i - p_{jt}) + x_{jt}\beta + \xi_{jt} + \varepsilon_{ijt}$$

IV Regression $\Rightarrow \log\left(\frac{s_{jt}}{s_{0t}}\right) = -\alpha p_{jt} + x_{jt}\beta + \xi_{jt}$

Mixed Logit Utility:

$$U_{ijt} = \alpha_i(y_i - p_{jt}) + x_{jt}\beta_i + \xi_{jt} + \varepsilon_{ijt}$$

Simulation +IV+ GMM $\Rightarrow \min_{\theta \in \Theta} \|s_{jt}(\mathbf{x}_t, \mathbf{p}_t, \xi_t; \theta) - s_{jt}\|$

where s_{jt} is the observed market shares and $s_{jt}(\mathbf{x}_t, \mathbf{p}_t, \xi_t; \theta)$ are the predicted market shares:

$$s_{jt}(\mathbf{x}_t, \mathbf{p}_t, \xi_t; \theta) = \int_{A_{jt}} \frac{\exp(-\alpha p_{jt} + x_{jt}\beta + \xi_{jt} + [-p_{jt}, x_{jt}]\Sigma v_i)d\Phi(v_i)}{1 + \sum_h \exp(-\alpha p_{ht} + x_{ht}\beta + \xi_{ht} + [-p_{ht}, x_{ht}]\Sigma v_i)}$$

Logit vs BLP: Own price elasticities

Logit Own Price elasticities:

$$\frac{\partial s_{jt}(p_t)}{\partial p_{jt}} = \frac{\partial s_{jt}(p_t)}{\partial \delta_{jt}} \frac{\partial \delta_{jt}}{\partial p_{jt}} = s_{jt}(1 - s_{jt})(-\alpha)$$
$$\Rightarrow \epsilon_{jj}^L = \frac{\partial s_{jt}(p_t)}{\partial p_{jt}} \frac{p_{jt}}{s_{jt}} = -\alpha p_{jt}(1 - s_{jt})$$

BLP Own Price Elasticities: BLP is a mixture of heterogenous logit consumers, hence it is not surprising that the own price elasticities are given by:

$$\epsilon_{jj}^{BLP} \equiv \frac{\partial s_{jt}}{\partial p_{jt}} \frac{p_{jt}}{s_{jt}} = -\frac{p_{jt}}{s_{jt}} \int |\alpha_i| s_{ijt} (1 - s_{ijt}) d\Phi(v_i)$$

Using our R simulated consumers, we can estimate the own price elasticity as follows:

$$\widehat{\epsilon}_{jj}^{BLP} = -\frac{p_{jt}}{s_{jt}} \frac{1}{R} \sum_{i=1}^{R} |\alpha_i| \widehat{s}_{ijt} (1 - \widehat{s}_{ijt})$$
^{29/31}

Logit vs BLP: Cross price elasticities

Logit Cross price elasticities:

$$\frac{\partial s_{jt}(p_t)}{\partial p_{kt}} = \frac{\partial s_{jt}(p_t)}{\partial \delta_{kt}} \frac{\partial \delta_{kt}}{\partial p_{kt}} = s_{jt} s_{kt} \alpha$$
$$\Rightarrow \epsilon_{jk}^L = \frac{\partial s_{jt}}{\partial p_{kt}} \frac{p_{kt}}{s_{jt}} = \alpha p_{kt} s_{kt}$$

Mixed logits or BLP Cross Price Elasticities:

$$\epsilon_{jk}^{BLP} \equiv \frac{\partial s_{jt}}{\partial p_{kt}} \frac{p_{kt}}{s_{jt}} = -\frac{p_{kt}}{s_{jt}} \int |\alpha_i| s_{ijt} s_{ikt} d\Phi(v_i)$$

Obviously: $\hat{\epsilon}_{jj}^{BLP} = -\frac{p_{kt}}{s_{jt}} \frac{1}{R} \sum_{i=1}^{R} |\alpha_i| \hat{s}_{ijt} \hat{s}_{ikt}$

Why IIA is less problematic in the BLP framework?

Conclusions

- We have covered the famous BLP model to estimate a demand for differentiated products. Huge improvement in comparison with previous models.
- Still, it has several limitations as it is static and characteristics are required to be exogenous.
- Next class will cover applications that include the supply side of the market to compute welfare and counterfactual exercises.