

IN78O-1 MICROECONOMÍA AVANZADA (segunda parte)

Profesor: Matteo Triossi Verondini Auxiliar: María Haydée Fonseca Mairena

Tarea N°1

Primavera 2018

Fecha de entrega: 05 de noviembre

Pregunta 1

Suponga que existen $I \in \mathbb{N}$ individuos y $L \in \mathbb{N}$ bienes en la economía. En esta economía una canasta de consumo es $x \in \mathbb{R}_+^L$ y $\omega \in \mathbb{R}_+^L$ representa la dotación inicial. Denotemos por $P \in \mathbb{R}_{++}^L$ los precios. Cada agente i enfrenta la restricción de escoger en el siguiente conjunto presupuestal:

$$B(P,\omega^i) = \{ x \in \mathbb{R}^L_+ | P \cdot x \le P \cdot \omega^i \}$$

Demuestre que la correspondencia prespuestal $B: \mathbb{R}^L_{++} \times \mathbb{R}^L_+ \rightrightarrows \mathbb{R}^L_+$ es continua.

Respuesta

Fije $(P, \omega) \in \mathbb{R}^n_{++} \times \mathbb{R}^n_+$. Sea $((P_n, \omega_n))_{n=1}^\infty$ una secuencia definida en $\mathbb{R}^n_{++} \times \mathbb{R}^n_+$ tal que $(P_n, \omega_n) \to (P, \omega)$. Sea $(x_n)_{n=1}^\infty$ una secuencia tal que $\forall n \in \mathbb{N}$ $x_n \in B(P_n, \omega_n)$. Dado que $P_n \to P \in \mathbb{R}^n_{++}$, $\exists P^* \in \mathbb{R}^n_{++}$ tal que $\forall n \in \mathbb{N}$ $P_n \geq P^*$. De la misma manera, dado que $\omega_n \to \omega$, $\exists \omega' \in \mathbb{R}^n_+$ tal que $\forall n \in \mathbb{N}$ $\omega_n \leq \omega'$. Ahora como $P_n \cdot \omega' \geq P_n \cdot \omega_n$ luego, $P \cdot \omega' \geq P \cdot \omega$. Puesto que $P_n \cdot \omega_n \to P \cdot \omega$ entonces $\exists N \in \mathbb{N}$ tal que $n \geq N \implies P \cdot (\omega' + 1) \geq P_n \cdot \omega_n$. De otra parte es claro que existe $\omega^* \in \mathbb{R}^n_+$ tal que $P^* \cdot \omega^* \geq P \cdot (\omega' + 1)$. En conclusión $\exists P^* \in \mathbb{R}^n_+$, $\exists \omega^* \in \mathbb{R}^n_+$ y $\exists N \in \mathbb{N}$ tal que para todo $n \geq N$, $P_n \geq P^*$, y $P_n \cdot \omega_n \leq P^* \cdot \omega^*$. Por lo tanto, para todo $n \geq N$, $x_n \in B(P_n, \omega_n) \subseteq B(P^*, \omega^*)$. Esto implica que existe una subsecuencia $(x_{n(k)})_{k=1}^\infty$

Por lo tanto, para todo $n \geq N$, $x_n \in B(P_n, \omega_n) \subseteq B(P^*, \omega^*)$. Esto implica que existe una subsecuencia $(x_{n(k)})_{k=1}^{\infty}$ de $(x_n)_{n=1}^{\infty}$ que es convergente. Sea x el límite de es ta subsecuencia. Por continuidad del producto interno $P_{n(k)} \cdot x_{n(k)} \to P \cdot x$, mientras que $\forall k \in \mathbb{N}$ $P_{n(k)} \cdot x_{n(k)} \leq P_{n(k)} \cdot \omega_{n(k)} \to P \cdot \omega$ implica que $P \cdot x \leq P \cdot \omega$, y por tanto $x \in B(P, \omega)$. Esto muestra que B es hemicontínua superior en (P, ω) . Dado que (P, ω) era arbritrario, B es hemicontinua superior.

Sean ahora $((P_n, \omega_n))_{n=1}^{\infty}$ una secuencia definida en $\mathbb{R}^n_{++} \times \mathbb{R}^n_{+}$ y $x \in \mathbb{R}^n_{+}$ tal que $(P_n, \omega_n) \to (P, \omega)$ y $x \in B(P, \omega)$. Si $\omega = 0$, no hay continuidad en P y el problema es trivial. Supongamos entonces que $\omega \in \mathbb{R}^n_{++}$. Defina $x_i = 0$

 $\frac{P_i \cdot \omega_i}{P \cdot \omega} \left(\frac{P_1 \cdot x_1}{P_{i,1}}, \dots, \frac{P_n \cdot x_n}{P_{i,n}} \right)$. Es fácil ver que $\forall i \in \mathbb{N} \ x_i \in B(P_i, \omega_i) \ y \ x_i \to x$. Esto muestra que B es hemicontínua inferior en (P, ω) . Dado que (P, ω) era arbritrario, B es hemicontínua inferior.

Pregunta 2

Asuma que existen dos bienes en la economía y dos consumidores, A y B, cuyas funciones de utilidad son

$$U_A(x_{A1}, x_{A2}) = 2x_{A1} + 3x_{A2}$$

$$U_B(x_{B1}, x_{B2}) = min\{x_{B1}, 2x_{B2}\}$$

Las dotaciones son $W_A = (3,2)$ y $W_B = (1,4)$.

¿Existe equilibrio competitivo en esta economía? En caso afirmativo encuentre, en caso negativo demuestre.

Respuesta:

Sí existe.

Resolviendo el problema de maximización tenemos que:

$$x_A^* = \begin{cases} (0, \frac{R_A}{p_2}) & \text{si } \frac{p_1}{p_2} > 2/3\\ \{(x_{A1}^*, x_{A2}^*) \in \mathbb{R}_+^2 : p_1 x_{A1}^* + p_2 x_{A2}^* = R_A\} & \text{si } \frac{p_1}{p_2} = 2/3\\ (\frac{R_A}{p_1}, 0) & \text{si } \frac{p_1}{p_2} < 2/3 \end{cases}$$

$$x_A^* = \begin{cases} (0, \frac{R_A}{p_2}) & \text{si } \frac{p_1}{p_2} > 2/3 \\ \{(x_{A1}^*, x_{A2}^*) \in \mathbb{R}_+^2 : p_1 x_{A1}^* + p_2 x_{A2}^* = R_A\} & \text{si } \frac{p_1}{p_2} = 2/3 \\ (\frac{R_A}{p_1}, 0) & \text{si } \frac{p_1}{p_2} < 2/3 \end{cases}$$
 Sustituyendo $W_A(3, 2)$ en la restricción presupuestaria obtenemos que $R_A = 3p_1 + 2p_2$. Así tenemos que:
$$x_A^* = \begin{cases} (0, \frac{3p_1 + 2p_2}{p_2}) & \text{si } \frac{p_1}{p_2} > 2/3 \\ \{(x_{A1}^*, x_{A2}^*) \in \mathbb{R}_+^2 : p_1 x_{A1}^* + p_2 x_{A2}^* = 3p_1 + 2p_2\} & \text{si } \frac{p_1}{p_2} = 2/3 \\ (\frac{3p_1 + 2p_2}{p_1}, 0) & \text{si } \frac{p_1}{p_2} < 2/3 \end{cases}$$

Por otra parte, en el caso de B tenemos:

$$x_{B1}^* = \frac{2p_1 + 8p_2}{2p_1 + p_2} \ge 0$$
$$x_{B2}^* = \frac{p_1 + 4p_2}{2p_1 + p_2} \ge 0$$

Sabemos que en equilibrio debe cumplirse que $Z(p) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Ahora el equilibrio lo tendremos que buscar en los distintos tramos que se originan como resultado de la forma de la función de demanda del consumidor A.

■ Tramo en el que $\frac{p_1}{p_2} > \frac{2}{3}$.

$$\begin{bmatrix} 0-3 \\ \frac{3p_1+2p_2}{p_2} - 2 \end{bmatrix} + \begin{bmatrix} \frac{2p_1+8p_2}{2p_1+p_2} - 1 \\ \frac{p_1+4p_2}{2p_1+p_2} - 4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} \frac{2p_1+8p_2}{2p_1+p_2} - 4 \\ \frac{3p_1+2p_2}{p_2} + \frac{p_1+4p_2}{2p_1+p_2} - 6 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Por la ley de Walras nos quedamos con una sola ecuación, por ejemplo con la primera. Además, podemos normalizar $p_1 = 1$. Resolviendo obtenemos que $p_2 = \frac{3}{2}$. Luego el vector de precios obtenido será p = (1, 3/2). Si comprobamos la condición del tramo $\frac{p_1}{p_2} > \frac{2}{3}$, obsrvamos que no se cumple, con lo cual el vector de precios calculado NO es de equilibrio.

■ Tramo en el que $\frac{p_1}{p_2} < \frac{2}{3}$.

$$\begin{bmatrix} \frac{3p_1+2p_2}{p_2} - 3 \\ 0 - 2 \end{bmatrix} + \begin{bmatrix} \frac{2p_1+8p_2}{2p_1+p_2} - 1 \\ \frac{p_1+4p_2}{2p_1+p_2} - 4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} \frac{3p_1+2p_2}{p_1} + \frac{2p_2+8p_2}{2p_1+p_2} - 4 \\ \frac{p_1+4p_2}{2p_1+p_2} - 6 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Por la ley de Walras nos quedamos con una sola ecuación, por ejemplo con la segunda. Además, podemos normalizar $p_1=1$. Resolviendo obtenemos que $\frac{1+4p_2}{2+p_2}-6=0$, con lo que $p_2<0$. Luego el vector de precios obtenido NO será de equilibrio.

■ Tramo en el que $\frac{p_1}{p_2} = \frac{2}{3}$

$$\begin{bmatrix} x_{A1}^* - 3 \\ x_{A2}^* - 2 \end{bmatrix} + \begin{bmatrix} \frac{2p_1 + 8p_2}{2p_1 + p_2} - 1 \\ \frac{p_1 + 4p_2}{2p_1 + p_2} - 4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} x_{A1}^* + \frac{2p_1 + 8p_2}{2p_1 + p_2} - 4 \\ x_{A2}^* + \frac{p_1 + 4p_2}{2p_1 + p_2} - 6 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Por la ley de Walras nos quedamos con una sola ecuación, por ejemplo con la primera. Además, podemos normalizar $p_1=1$. Así obtenemos que $p_2=\frac{3}{2}$. Operando sobre la primera ecuación tenemos que $x_{A1}^*=0$ y como $p_1x_{A1}^*+p_2x_{A2}^*=3p_1+2p_2$, llegamos al valor de $x_{A2}^*=4$. Luego el vector de precios de equilibrio será $p^*=(1,3/2)$.

Si sutituimos este vector de precios en las funciones de demanda del consumidor B, obtenemos que $x_B^* = (4, 2)$. Con lo cual el equilibrio de esta economía será:

$$[p^* = (2,1), x_A^* = (0,4), x_B^*(4,2)].$$