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Support Vector Machines
O
O o)
O
O
O
" O
[ |
[ |
|
[ |
[ |
[ | [ |

@ Find a linearhyperplane (decision boundary) that will separate the data
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Support Vector Machines

® One Possible Solution
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Support Vector Machines

® Anotherpossible solution
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Support Vector Machines
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@ Otherpossible solutions
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® Which one is better? B1 orB2?
® How do you define better?
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Support Vector Machines
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® Find hyperplane maximizes the margin =>B1 is betterthan B2

Support Vector Machines
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Linear SVM

@ Linear model:

o 1
f(x)—{_1

® Learning the model is equivalent to determining
the values of yyand b

— How to find wand b from training data?
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Learning Linear SVM

® Objective is to maximize: Margin = ﬁ
w

= (12
[l

— Which is equivalent to minimizing: L(w) = 5

— Subject to the following constraints:
1 ifweX +b=1
i _{-1 ifwex +bs—1
or
y(wex +b)=1, i=12,..,N

+ This is a constrained optimization problem

— Solve it using Lagrange multiplier method
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Example of Linear SVM
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Learning Linear SVM

® Decision boundary depends only on support
vectors

— If you have data set with same support
vectors, decision boundary will not change

— How to classify using SVM once w and b are
found? Given a testrecord, x;

1
-1 ifwex +b=s-1

£(3) = {
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Support Vector Machines

® What if the problem is not linearly separable?

[ | [ |
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Support Vector Machines

® What if the problem is not linearly separable?

— Introduce slack variables
¢ Need to minimize:

+ Subject to:

¢ If kis 1 or 2, this leads to same objective function
as linear SVM but with differentconstraints (see
textbook)
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Support Vector Machines

@ Find the hyperplane that optimizes both factors
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Nonlinear Support Vector Machines
@ What if decision boundary is not linear?
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Nonlinear Support Vector Machines

@ Trick: Transform data into higher dimensional
space

O , 1‘12 —r1+ 15 —x9 = —0.46.

2

| D (2y.29) — (27,23, \:"51'1. \,313 1).

[(EXe)

uqff + 11'3.1‘% + wo \-5.1‘1 + wq \.'5.1'2 + wg = 0.

Decision boundary:

-0‘.1 -0.65 0 17‘»} ° @(f) + b — O
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Learning Nonlinear SVM

® Optimization problem:

ol
min =5=

subject to yi(w- ®(x) +b) = 1, V{(zi, )}

® Which leads to the same set of equations (but
involve ®(x) instead of x)

n
1 L . . \
Lp = Z Ai — 32 ANy (%) - D(x;) w = Z/\iy:’(l)(xz‘)
i=1 < ¢
Afui(Y7 Ajus®(x;) - ®(xi) +b) — 1} =0,
J
n
f(z) = sign(w - ®(z) +b) = si_qnf_z Aivi®(xi) - ®(z) +b).

=1
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Learning NonLinear SVM

® Issues:

— What type of mapping function ® should be
used?

— How to do the computation in high
dimensional space?
¢ Most computations involve dot product ®(x;)® P(x;)
+ Curse of dimensionality?
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Learning Nonlinear SVM

® Kernel Trick:
— D(x))* (x;) = K(x;, ;)

— K(xi, ;) is a kernel function (expressed in
terms of the coordinates in the original space)
¢ Examples:
K(xy)=(x-y+1)"
K(x,y) = e~ Ix=¥I?/(20%)

K(x.y) =tanh(kx -y — 4)

02/03/2018 Introduction to Data Mining 20




Example of Nonlinear SVM
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Learning Nonlinear SVM

® Advantages of using kernel:
— Don’t have to know the mapping function ®

— Computing dot product ®(x;)* ®(x) in the
original space avoids curse of dimensionality

® Not all functions can be kernels

— Must make sure there is a corresponding ® in
some high-dimensional space

— Mercer’s theorem (see textbook)
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Characteristics of SVM

@ Since the learning problemis formulated as a convex
optimization problem, efficientalgorithms are available to
find the global minima of the objective function (many of
the other methods use greedy approaches and find locally
optimal solutions)

e Overfitting is addressed by maximizing the margin of the
decision boundary, butthe user still needs to provide the
type of kernel function and cost function

e Difficult to handle missing values
@ Robustto noise
e High computational complexity for building the model
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