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Continuous and Categorical Attributes

How to apply association analysis to non-asymmetric binary

variables?
Gender Age | Annual | No of hours spent | No of email | Privacy
Income online per week accounts Concern
Female 26 90K 20 4 Yes
Male 51 135K 10 2 No
Male 29 80K 10 3 Yes
Female 45 120K 15 3 Yes
Female 31 95K 20 5 Yes
Male 25 55K 25 5 Yes
Male 37 100K 10 1 No
Male 41 65K 8 2 No
Female 26 85K 12 1 No

Example of Association Rule:

{Gender=Male, Age €[21,30)} — {No of hours online = 10}
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Handling Categorical Attributes
® Example: Internet Usage Data
Gender Level of State Computer | Online Chat Online Privacy
Education at Home | Auction Online Banking | Concerns
Female Graduate Illinois Yes Yes Daily Yes Yes
Male College California No No Never No No
Male Graduate Michigan Yes Yes Monthly Yes Yes
Female College Virginia No Yes Never Yes Yes
Female Graduate California Yes No Never No Yes
Male College Minnesota Yes Yes Weekly Yes Yes
Male College Alaska Yes Yes Daily Yes No
Male High School Oregon Yes No Never No No
Female Graduate Texas No No Monthly No No
{Level of Education=Graduate, Online Banking=Yes}
— {Privacy Concerns = Yes}
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Handling Categorical Attributes

® Introduce a new “item” for each distinct attribute-
value pair

Male | Female Education | Education Education -« | Privacy | Privacy
= Graduate | = College | = High School = Yes = No

0 1 1 0 0 1 0

1 0 0 1 0 0 1

1 0 1 0 0 1 0

0 1 0 1 0 1 0

0 1 1 0 0 1 0

1 0 0 1 0 1 0

1 0 0 0 0 0 1

1 0 0 0 1 0 1

0 1 1 0 0 0 1
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Handling Categorical Attributes

® Some attributes can have many possible values

— Many of their attribute values have very low support
¢ Potential solution: Aggregate the low-support attribute values

Virginia
Others
Ohio
New York Illinois
Michigan
Florida
California

Minnesota

Massachusetts Texas
Oregon
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Handling Categorical Attributes

e Distribution of attribute values can be highly skewed
— Example: 85% of survey participants own a computerat home
+ Most records have Computer at home = Yes

+ Computation becomes expensive; many frequent itemsets involving
the binary item (Computer at home =Yes)

+ Potential solution:
— discard the highly frequent items

— Use alternative measures such as h-confidence
e Computational Complexity
— Binarizing the data increases the number of items

— But the width of the “transactions” remain the same as the
number of original (non-binarized) attributes

— Produce more frequent itemsets but maximum size of frequent
itemsetis limited to the number of original attributes
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Handling Continuous Attributes

o Different methods:
— Discretization-based
— Statistics-based

— Non-discretization based
¢ minApriori

@ Different kinds of rules can be produced:

— {Age€[21,30), No of hours online€[10,20)}
— {Chat Online =Yes}

— {Age€[21,30),Chat Online = Yes}
— No of hours online: u=14, 0=4
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Discretization-based Methods

Gender Age | Annual | No of hours spent | No of email | Privacy
Income online per week accounts Concern
Female 26 90K 20 4 Yes
Male 51 135K 10 2 No
Male 29 80K 10 3 Yes
Female 45 120K 15 3 Yes
Female 31 95K 20 5 Yes
Male 25 55K 25 5 Yes
Male 37 100K 10 1 No
Male 41 65K 8 2 No
Female 26 85K 12 1 No
Male | Female Age Age Age Privacy | Privacy
<13 | €[13,21) | € [21,30) = Yes = No
0 1 0 0 1 1 0
1 0 0 0 0 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 0
0 1 0 0 0 1 0
1 0 0 0 1 1 0
1 0 0 0 0 0 1
1 0 0 0 0 0 1
0 1 0 0 1 0 1
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Discretization-based Methods
® Unsupervised:
_ Equal_WIdth blnnlng <123><456><789>
— Equal-depth binning <12><34567><89>
— Cluster-based
® Supervised discretization
Continuous attribute, v
1 2 3 4 5 6 7 8 9
Chat Online = Yes 0 0 20 (10 |20 |O 0 0 0
Chat Online = No 150 (100 |O 0 0 100 [100 | 150 |100
[\ v I\ ~ A ~ J
bini bin2 bin3
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Discretization Issues

Pattern Pattern  Pattern

@ Interval width A B c [l High support region
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Pattern A:  Age € [10,15) — Chat Online = Never

Pattern B:  Age € [26,41) — Chat Online = Never

Pattern C:  Age € [42,48) — Online Banking = Yes
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Discretization Issues

@ Interval too wide (e.g., Bin size= 30)
— May merge several disparate patterns
¢ Patterns A and B are merged together
— May lose some of the interesting patterns
+ Pattern Cmay not have enough confidence

@ Interval too narrow (e.g., Bin size = 2)
— Pattern A is broken up into two smaller patterns
¢ Canrecoverthe pattern by merging adjacentsubpatterns
— Pattern B is broken up into smaller patterns
¢ Cannotrecoverthe pattern by merging adjacentsubpatterns
— Some windows may not meet support threshold
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Discretization: all possible intervals

Number of intervals = k @ o ( J [ J
Total number of Adjacent intervals = k(k-1)/2

® Executiontime
— Ifthe range is partitioned into k intervals, there are O(k2) new items

— Ifaninterval[a,b)is frequent, thenallintervals that subsume [a,b)
must also be frequent

o E.g.: if {Age €21,25), Chat Online=Yes} is frequent,
then {Age €[10,50), Chat Online=Yes} is also frequent

— Improve efficiency:

¢ Use maximum support to avoid intervals that are too wide
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Discretization Issues

® Redundant rules

R1: {Age €[18,20), Age €[10,12)} — {Chat Online=Yes}
R2: {Age €[18,23), Age €[10,20)} — {Chat Online=Yes}

— If both rules have the same supportand confidence,
prune the more specificrule (R1)

02/03/2018 Introduction to Data Mining 14




Statistics-based Methods

e Example:
{Income > 100K, Online Banking=Yes} — Age: u=34
@ Rule consequentconsists of a continuous variable,
characterized by their statistics
— mean, median, standard deviation, etc.
® Approach:
— Withhold the target attribute from the rest of the data
— Extract frequent itemsets from the rest of the attributes
+ Binarized the continuous attributes (except for the target attribute)

— For each frequentitemset, compute the corresponding
descriptive statistics of the target attribute

+ Frequent itemset becomes a rule by introducing the target variable
as rule consequent

— Apply statistical test to determine interestingness of the rule

02/03/2018 Introduction to Data Mining 15

Statistics-based Methods

Gender | --- | Age | Annual | No of hours spent | No of email | Privacy
Income online per week accounts Concern
Female | --- 26 90K 20 4 Yes
Male e 51 135K 10 2 No
Male e 29 80K 10 3 Yes
Female | --- 45 120K 15 3 Yes
Female | --- 31 95K 20 5 Yes
Male e 25 55K 25 5 Yes
Male cee 37 100K 10 1 No
Male e 41 65K 8 2 No
Female | --- 26 85K 12 1 No
Frequent Itemsets: Association Rules:
{Male, Income > 100K} {Male, Income > 100K} — Age: p = 30
{Income < 30K, No hours €[10,15)} {Income < 40K, No hours €[10,15)} — Age: p = 24
{Income > 100K, Online Banking = Yes} {Income > 100K,Online Banking = Yes}
— Age: =34

02/03/2018 Introduction to Data Mining 16




Statistics-based Methods

® How to determine whether an association rule
interesting?
— Compare the statistics for segment of population
covered by the rule vs segmentof population not

covered by the rule:
A=B:u versus A=B:u

- L g M-u-A

— Statistical hypothesis testing: s
+ Null hypothesis: HO: w=u+ A R
nn

# Alternative hypothesis: H1: w'>u+ A
¢ Z has zero mean and variance 1 under null hypothesis
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Statistics-based Methods

e Example:
r: Browser=Mozilla A Buy=Yes — Age: n=23
— Rule is interesting if difference betweenu and w’ is more than 5
years (i.e., A = 5)
— Forr, suppose n1=50,s1=3.5
— Forr (complement): n2=250,s2=6.5

7 u-u—-A _ 30-23-5 _311

25 \/3.52 6.5
R +
noon, 50 250
— For 1-sided test at 95% confidence level, critical Z-value for
rejecting nullhypothesisis 1.64.

— Since Z is greaterthan 1.64,ris an interesting rule

02/03/2018 Introduction to Data Mining 18




Min-Apriori

Document-term matrix:

TID|W1 W2 W3 W4 W5
D1| 2 2 0 0 1
D2y 0 0 1 2 2
D3| 2 3 0 0 O
D4f 0 0 1 0 1
DS5| 1 1 1 0 2

Example:

W1 and W2 tends to appear together in the
same document

02/03/2018 Introduction to Data Mining 19

Min-Apriori

e Data contains only continuous attributes of the same
“type”

— e.g., frequency of words in a document

TIDW1 W2 W3 W4 W5
D1] 2 2 0 0 1
D2 0 0 1 2 2
D3| 2 3 0 0 0
D4 0 0 1 0 1
e Potential solution: D5] 1 1 1 0 2

— Convertinto 0/1 matrix and then apply existing algorithms
+ lose word frequency information

— Discretization does not apply as users want association among
words notranges of words

02/03/2018 Introduction to Data Mining 20




Min-Apriori

® How to determine the support of a word?

— If we simply sum up its frequency, support countwill

be greaterthan total number of documents!
¢ Normalize the word vectors — e.g., using Ly norms
¢ Each word has a supportequalsto 1.0

TID|W1 W2 W3 W4 W5

D1 2 2 0 0 1

D2 0 O 1 2 2 Normalize
D3| 2 3 0 0 0
D4y 0 0 1 0 1

D5 1. 1. 1 0 2

02/03/2018

TID

W1 W2 W3 W4 W5

D1
D2
D3
D4
D5

0.40 0.33 0.00 0.00 0.17
0.00 0.00 0.33 1.00 0.33
0.40 0.50 0.00 0.00 0.00
0.00 0.00 0.33 0.00 0.17
0.20 0.17 0.33 0.00 0.33

Introduction to Data Mining
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Min-Apriori

® New definition of support:

sup(C) = I min D(, )

TID

W1 W2 W3 W4 W5

D1
D2
D3
D4
D5

0.40 0.33 0.00 0.00 0.17
0.00 0.00 0.33 1.00 0.33
0.40 0.50 0.00 0.00 0.00
0.00 0.00 0.33 0.00 0.17
0.20 0.17 0.33 0.00 0.33

02/03/2018

Introduction to Data Mining

Example:
Sup(W1,W2,W3)
=0+0+0+0+0.17
=0.17

22




Anti-monotone property of Support

TIDW1 W2 W3 W4 W5
D1 10.40 0.33 0.00 0.00 0.17
D2 10.00 0.00 0.33 1.00 0.33
D3 10.40 0.50 0.00 0.00 0.00
D4 |0.00 0.00 0.33 0.00 0.17
D5 [0.20 0.17 0.33 0.00 0.33

Example:
Sup(W1)=0.4+0+0.4+0+0.2=1

Sup(W1, W2)=0.33+0+0.4+0+0.17=0.9
Sup(W1, W2,W3)=0+0+0+0+0.17=0.17
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Concept Hierarchies

Food .
Electronics

Computers Home

Wheat ~ White ~ Skim 2%

Desktop Laptop Ac DVD

Foremost Kemps

Printer ~ Scanner
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Multi-level Association Rules

® Why should we incorporate concept hierarchy?

— Rules atlowerlevels may not have enough supportto
appearin any frequent itemsets

— Rules atlowerlevels of the hierarchy are overly
specific

¢ e.g., skim milk — white bread, 2% milk — wheat bread,
skim milk — wheat bread, etc.
are indicative of association betweenmilk and bread

— Rules at higherlevel of hierarchy may be too generic

02/03/2018 Introduction to Data Mining 25

Multi-level Association Rules

® How do support and confidence vary as we
traverse the concept hierarchy?

— If X'is the parentitem for both X1 and X2, then
o(X) <o(X1) + o(X2)

- If o(X1 U Y1) 2 minsup,
and Xis parentof X1,Y is parentof Y1
then o(X UY1)=minsup,o(X1 UY)=minsup
o(X UY) 2 minsup

- If conf(X1 = Y1) = minconf,
then conf(X1 = Y) 2= minconf

02/03/2018 Introduction to Data Mining 26




Multi-level Association Rules

® Approach 1:
— Extend current association rule formulationby augmenting each
transaction with higherlevelitems

Original Transaction: {skim milk, wheat bread}

Augmented Transaction:
{skim milk, wheat bread, milk, bread, food}

® Issues:
— ltemsthatreside at higherlevels have much highersupport
counts

+ if support threshold is low, too many frequent patterns involving items
from the higher levels

— Increased dimensionality of the data

02/03/2018 Introduction to Data Mining 27

Multi-level Association Rules

@ Approach 2:
— Generate frequent patterns at highestlevel first

— Then, generate frequent patterns at the next highest
level,and so on

® Issues:

— /O requirements will increase dramatically because
we need to perform more passes over the data

— May miss some potentially interesting cross-level
association patterns

02/03/2018 Introduction to Data Mining 28




Data Mining
Association Analysis: Advanced Concepts

Sequential Patterns

Examples of Sequence

@ Sequence of different transactions by a customer
at an online store:
< {Digital Camera,iPad} {memory card} {headphone,iPad cover}>

® Sequence of initiating events causing the nuclear
accident at 3-mile Island:

(http://stellar-one.com/nuclear/staff_reports/summary_SOE_the_initiating_event.htm)

< {clogged resin}{outlet valve closure} {loss of feedwater}
{condenser polisher outlet valve shut} {booster pumps trip}
{main waterpump trips} {main turbine trips} {reactor pressure increases}>

® Sequence of books checked out at a library:
<{Fellowship of the Ring} {The Two Towers} {Return of the King}>
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Sequential Pattern Discovery: Examples

® Intelecommunications alarmlogs,
— Inverter_Problem:
(Excessive_Line_Current) (Rectifier_Alarm)--> (Fire_Alarm)

@ In point-of-sale transaction sequences,
— ComputerBookstore:

(Intro_To_Visual_C) (C++_Primer)-->
(Perl_for_dummies, Tcl_Tk)

— Athletic Apparel Store:
(Shoes) (Racket, Racketball) > (Sports_Jacket)
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Sequence Data

Sequence Sequence Element Event
Database (Transaction) (Item)
Customer Purchase history of agiven | Aset of items bought by | Books, diary products,
customer a customer at timet CDs, etc
Web Data Browsing activity of a A collection of files Home page, index
particular Web visitor viewed by a Web visitor page, contact info, etc
after a single mouse click
Event data History of events generated | Events triggered by a Types of alarms
by agiven sensor sensor at time t generated by sensors
Genome DNA sequence of a An element of the DNA Bases A T,G,C
sequences particular species sequence
Element
. Event
(Transaction)
(Item)
Sequence

02/03/2018 Introduction to Data Mining 32




Sequence Data

Timeline HHIHHHHHHHH
10 15 20 25 30 35
Sequence Database:
Sequence I Timestamp Events Sequence A: }
A 10 2,3, 5 2 5 1
A 20___[6.1 s 1
A 23 1 R
B 11 4,5, 6 e
B 17 2 Sequence B: H } } }
B 21 7,8, 1,2 4 2 7 1
B 28 1,6 5 8 6
C 14 1,8, 7 6 1
2
Sequence C: }
1
7
8
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Sequence Data vs. Market-basket Data

Sequence Database:

Customer Date Items bought
A 10 2,3, 5
A 20 16
A 23 1
B 1 4,56
B 17 2
B 21 1,278
B 28 1,6
C 14 17,8
02/03/2018 Introduction to Data Mining

Market- basket Data

Events
2,3,5
1,6

1

4,5,6

2
1,2,7,8
1,6
1,7,8

34




Sequence Data vs. Market-basket Data

Sequence Database:

Market- basket Data

Customer Date Items bought Events
A 10 2,3,5 2,35
A 20 1,6 1,6
A 23 1
B 1 4,56 456
B 17 2 2, ’
B 21 1,2,7,8 1,2,7,8
B 28 ,6 1,6
9] 14 1,78 1,7,8
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Formal Definition of a Sequence

® A sequence is an ordered list of elements

S = <e1eze3...>

— Each elementcontains a collection of events (items)

e = {i1, i2, ceey Ik}

® Length of a sequence, |s|, is given by the number

of elements in the sequence

® A k-sequence is a sequence that contains k

events (items)

02/03/2018
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Formal Definition of a Subsequence

® Asequence <aja,...a,>is contained in anothersequence <b4 b, ...
b,> (m 2 n) if there existintegers
iy <ip<...<i,suchthata;Cb;;,a,Cb, ..., a,Cb;,
@ lllustrative Example:
S. b1 b2 b3 b4 b5
t: a, a, as
tis asubsequence ofsifa;Cb, a,Cb; a;Cbs

Data sequence Subsequence Contain?

<{2,4}{3,5,6} {8} > < {2}{8} > Yes

<{1.2}{3.4}> <{1}{2} > No
<{2,4}{2,4}{2,5} > <{2}{4} > Yes
<2,4}{2,5}, {4.5)> <{2}{4} {5} > No
<{2,4}{2,5}, {4.5)> < {2} {5} {5} > Yes
<{2,4}{2,5}, {4.5}> <{2,4,5)> No
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Sequential Pattern Mining: Definition

® The support of a subsequence w is defined as
the fraction of data sequences that contain w

® A sequential pattern is a frequent subsequence
(i.e., a subsequence whose support is = minsup)

e Given:

— a database of sequences

— a user-specified minimum supportthreshold, minsup
® Task:

— Find all subsequences with support= minsup
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Sequential Pattern Mining: Example

Object | Timestamp Events
A 1 1,2,4 Minsup = 50%
A 2 2,3
A 3 5 Examples of Frequent Subsequences:
B 1 1.2 <{1,2 > =60%
B 2 2,34 ’ S=0L
C 7 1’32’ <{2,3} > $=60%
: <{24p> s=80%
c 2 2,34 < {3} {5)> $=80%
C 3 24,5 <} {2 > $=80%
D 1 2 <{2{2> $=60%
D 2 3,4 <{1}{2,3} > $=60%
D 3 4,5 <{2}{2,3} > $=60%
E 1 1,3 <{1,2} {2,3} > $=60%
E 2 2,4,5
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Sequence Data vs. Market-basket Data

Sequence Database:

Market- basket Data

Customer

Date

Items bought Events
A 10 2,3,5 2.3 5
A 20 1,6 1.6
A 23 d
B 1 4,5, 6 456
B 17 2 2
B 21 1,2,7,8 1278
B 28 ,6 1.6
C 14 17,8 178
{2} > {1} (1,8) > (7)

21 {1 . _o(1,7,8)

conf((2} - (1)) = c(;(gz{})}) conf(1,8) > (7)) = o((18)
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Extracting Sequential Patterns

® Given nevents: iy, iy, is, ..

oy
@ Candidate 1-subsequences:

<{i>, <P, <(o>, ... <P

@ Candidate 2-subsequences:
iy, i}>, <{iy, iz}>, ...,

<{iH{id>, <l {id>, - <fin} {in}>
® Candidate 3-subsequences:

<{iy, iz, iag}>, <{i1, iz, ig}>, ...,

<ia, i} {ia}>, <{ia, izH{iz}>, ...,
i} {ir, iz}>, <{ia} {ir, ig}>, ...,
<fir}y {ia} {ia}>, <{is} {in}{iz>, ...
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Extracting Sequential Patterns: Simple example

0

® Given 2events: a, b O~
(@) (b)
@ Candidate 1-subsequences: \(:b)/

<{a}>, <{b}>.
Item-set patterns

@ Candidate 2-subsequences:
<{a} {a}>, <{a} {b}>, <{b}{a}>, <{b} {b}>, <{a, b}>.

@ Candidate 3-subsequences:
<{a} {a} {a}>, <{a} {a} {b}>, <{a} {b} {a}>, <{a}{b} {b}>,
<{b} {b} {b}>, <{b} {b} {a}>, <{b}{a} {b}>, <{b}{a} {a}>
<{a, b} {a}>, <{a, b} {b}>, <{fa}{a, b}>, <{b} {a, b}>
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Generalized Sequential Pattern (GSP)

® Step1:

— Make the first pass over the sequence database D to yield all the 1-
element frequent sequences

® Step2:

Repeat untilno new frequent sequences are found
— Candidate Generation:
¢ Merge pairs of frequent subsequences found in the (k-1)th pass to generate
candidate sequences that contain k items
— Candidate Pruning:
¢ Prune candidate k-sequences that contain infrequent (k-7)-subsequences

— Support Counting:

¢ Make a new pass over the sequence database D to find the support for these
candidate sequences

— Candidate Elimination:
¢ Eliminate candidate k-sequences whose actual support is less than minsup
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Candidate Generation

@ Base case (k=2):
— Merging two frequent 1-sequences <{i}> and <{iz}> will produce the
following candidate 2-sequences: <{is} {i1}>, <{i1}{i2}>, <{iz} {i2}>, {iz} {i1}>
and <{i1 i2}>.

e General case (k>2):

— A frequent (k-1)-sequence wq is merged with another frequent
(k-1)-sequence w. to produce a candidate k-sequence if the subsequence
obtained by removing an event from the first element in wy is the same as
the subsequence obtained by removing an event from the last element in
W2

+ The resulting candidate after merging is given by extending the
sequence w; as follows-
— Ifthe last element of w; has only oneevent, append it to w;

— Otherwise add the event from thelast element of w, (which is absent in the
last element of wy) to the last element of w;
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Candidate Generation Examples

® Merging wy=<{12 3} {4 6}>and w, =<{2 3} {4 6}{5}>
produces the candidate sequence <{1 2 3}{4 6}{5}> because the
last element of w, has only one event

® Merging wy=<{1}{2 3}{4}> and w, =<{2 3}{4 5}>
produces the candidate sequence <{1}{2 3} {4 5}> because the last
elementin w, has more than one event

® Mergingw=<{123}>andw,=<{234}>
produces the candidate sequence <{1 2 3 4}> because the last
elementin w, has more than one event

® We do nothave to merge the sequences
wy =<{1}{2 6} {4}> and w, =<{1} {2} {4 5}>
to produce the candidate <{1}{2 6} {4 5}> because if the latteris a
viable candidate, thenit can be obtained by merging w4 with
<{26}{45}>

11/19/2012 Introduction to Data Mining 45

GSP Example

Frequent
3-sequences

{1} {2}{3} >

{1}{25}> \
<{1} {5} {3} > .
< (2} {3} {4} > Candlde_lte
<{25}{3}> Generation
<{31 {41 {5} >
<{5}{34}>

<{1}{2){3} (4>
<{1}{25) {3} >
<{1}{5}{34}>
<{2}{3} {4} {5} >
<{25}{34}>
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GSP Example

Frequent
3-sequences

<{1}{2}{3}>
<{1}{25}>
{13 {5} {3} >

<{13{2} {3} {4}>
<{1}{25}{3}>
<{13{5}{34} >

\ Candidate

Generation

~

< {2} {3} {4} {5} > Candidate
<{25}{34}> Pruning
<{1}{25} {3} >
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Timing Constraints (I)
{A B} {C} {D E Xg: max-gap
=X | >no | ng: min-gap

<=mg

Xg =2, Nng =0, ms= 4

ms: maximum span

Data sequence, d Sequential Pattern, s | d contains s?
<{2,4}{3,5,6}{4,7}{4,5} {8} > < {6} {3} > Yes
<{1}{2} {3} {4} {5}> <{1}{4} > No
<{1}{2,3}{3,4} {4.5}> <{2}{3} {3}~ Yes
<{1.2}{3}{2,3} {3,4} {2,4} {4.5}> <{1.2}{5}> No

02/03/2018
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Mining Sequential Patterns with Timing Constraints

® Approach 1:
— Mine sequential patterns without timing constraints
— Postprocessthe discovered patterns

® Approach 2:

— Modify GSP to directly prune candidates that violate
timing constraints

— Question:
+ Does Apriori principle still hold?
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Apriori Principle for Sequence Data

Object | Timestamp Events Suppose:
A 1 1,2,4 - .
A 3 3 Xg=1 (méx gap)
A 3 5 ng = 0 (min-gap)
B 1 1,2 ms = 5 (maximum span)
B 2 2,34 . ano
C . T2 minsup =60%
C 2 2,34
c 3 245 <{2} {5}> support =40%
D 1 2
D 2 3,4 but
D 3 4,5 <{2} {3} {5}> support =60%
E 1 1,3
E 2 2,4,5

Problem exists because of max-gap constraint
No such problem if max-gap is infinite
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Contiguous Subsequences

® sis a contiguoussubsequence of
W= <e><ey>..<e>
if any of the following conditions hold:
1. sis obtained fromwby deleting an item from eithere; orex

2. sis obtained fromwby deleting an itemfromany element e;that
contains atleast 2 items

3. sis acontiguous subsequence of s’and s’is a contiguous
subsequence of w (recursive definition)

e Examples:s =<{1}{2}>
— is acontiguous subsequence of
<{13{2 3}>, <{1 2} {2} {3}>, and < {3 4}{1 2} {2 3} {4} >

— is nota contiguous subsequence of
<{1}{3}{2}> and < {2} {1} {3} {2}>
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Modified Candidate Pruning Step

@ Without maxgap constraint:

— A candidate k-sequence is pruned if at leastone of its
(k-1)-subsequencesisinfrequent

® With maxgap constraint:

— A candidate k-sequence is pruned if at leastone of its
contiguous (k-7)-subsequencesisinfrequent

02/03/2018 Introduction to Data Mining 52




Timing Constraints (1II)

A Bj

<= Xg

¢ D E

| >ng | <=ws

Xg: max-gap

ng: min-gap

<=mg

Xg=2,ng=0,ws =1, me=5

ws: window size

ms: maximum span

Data sequence, d

Sequential Pattern, s

d contains s?

< {2,4}{3,5,6} {4,7} {4,5) {8} > <{3,4,5)> Yes
<{1}{2} {3} {4} {5} <{1,2}{3,4}> No
< {1,2}{2,3}{3,4} {4,5}> < {1,2}{3,4} > Yes
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Modified Support Counting Step

® Given a candidate sequential pattern: <{a, c}>
— Any data sequences thatcontain

<...{ac}...>,

<...{a}... {c}...> (wheretime({c}) — time({a}) < ws)
<..c}...{a}...> (wheretime({a})—time({c}) < ws)

will contribute to the support count of candidate

pattern

02/03/2018
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Other Formulation

@ In some domains, we may have only one very long
time series

— Example:
¢ monitoring network traffic events for attacks
¢ monitoring telecommunication alarm signals

® Goal is to find frequent sequences of events in the
time series

— This problemis also known as frequent episode mining

e Q. =9 Q.

Pattern: <E1> <E3>
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General Support Counting Schemes

Object's Timeline Sequence: (p) (q)

p | ]
P P q q q a q Method Support
Count
1 2 3 4 5 e 7
COBJ 1
} CWIN 6 Assume:

Xg = 2 (max-gap)
ng = 0 (min-gap)

} CMINWIN 4

} CDISTO 8

& CDIST 5
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ws =0 (window size)

ms = 2 (maximum span)




Data Mining
Association Analysis: Advanced Concepts

Subgraph Mining

Frequent Subgraph Mining

@ Extends association analysis to finding frequent
subgraphs

® Useful for Web Mining, computational chemistry,
bioinformatics, spatial data sets, etc

Homepage

Research

Artificial
Intelligence

Databases

Data Mining

02/03/2018 Introduction to Data Mining 58




Graph Definitions

b

(a) Labeled Graph (b) Subgraph (c) Induced Subgraph

02/03/2018 Introduction to Data Mining 59

Representing Transactions as Graphs

® Each transaction is a clique of items

TD=1: A
Tran?z;ction ltems
1 {A.B,C,D} c
2 {A,B,E} — B
3 {B,C}
4 {A,B,D,E}
5 {B,C,D}
.E
D
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Representing Graphs as Transactions

G1 G2 G3
(a,b.p) | (a,b,q) | (ab.r) | (b,cp) | (b,cq)| (b.cr) (der)
G1 1 0 0 0 0 1 0
G2 1 0 0 0 0 0 0
G3 0 0 1 1 0 0 0
G3
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Challenges

@ Node may contain duplicate labels
® Support and confidence
— Howto define them?

® Additional constraints imposed by pattern
structure

— Supportand confidence are not the only constraints
— Assumption: frequent subgraphs must be connected
® Apriori-like approach:

— Use frequentk-subgraphsto generate frequent (k+1)
subgraphs

eWhatis k?
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Challenges...

® Support:
— number of graphs that contain a particular subgraph

@ Apriori principle still holds

® Level-wise (Apriori-like) approach:
— Vertex growing:
# k is the number of vertices
— Edge growing:
¢ k is the numberofedges
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Vertex Growing

G3 = join(G1,G2)

0 p p g 0 p p O Oﬁ’:zg

» 0 r 0 » 0 7 0 P
M, = M = M p r 0 0 r
GlprOO ozpro G3 000()
q ?
qg 0 0 O 0 0 r O 00 r 2 0
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Edge Growing

G3 = join(G1,G2)
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Apriori-like Algorithm

® Find frequent 1-subgraphs

® Repeat
— Candidate generation
¢ Use frequent (k-1)-subgraphs to generate candidate k-subgraph
— Candidate pruning

¢ Prune candidate subgraphs thatcontaininfrequent
(k-1)-subgraphs

— Supportcounting
¢ Countthe support of each remaining candidate

— Eliminate candidate k-subgraphs thatare infrequent

In practice, it is not as easy. There are many other issues
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Example: Dataset

G1 G2 G3 G4
(a,b,p) | (a,b,q) | (a,b,r) | (b,c,p) | (b,c,q) | (b,c,r) (d,e,r)

G1 1 0 0 0 0 1 0

G2 1 0 0 0 0 0 0

G3 0 0 1 1 0 0 0

G4 0 0 0 0 0 0 0
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Example

‘ Minimum support count = 2 ‘

k=1

Frequent @ @ @ @ @

Subgraphs

=2
requent

Subgraph P P
Hhorapns

P P
k=3 @ ®) @---
Candidate | (Pruned candidate
Subgraphs due to low support)
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Candidate Generation

® In Apriori:

— Merging two frequent k-itemsets will produce a
candidate (k+17)-itemset

@ In frequent subgraph mining
(vertex/edge growing)

— Merging two frequent k-subgraphs may produce more
than one candidate (k+17)-subgraph
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Multiplicity of Candidates (Vertex Growing)

G3 = join(G1,G2)

0 p p g 0O p p O 0 p p 0 g
Mm:pOrO MW:pOrO p 0 r 0 0
T p 0 0 S lp r 0 r M ={p r 0 r 0
q 0 0 0 0 r O 0 0 r 0 ?
qg 0 0 ?2 0
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Multiplicity of Candidates (Edge growing)

® Case 1:identical vertex labels

@ @ @
+ @‘e Q‘e
© © ©

®
AN
®
+
@
AN
®

9
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Multiplicity of Candidates (Edge growing)

® Case 2: Core contains identical labels

VRS

@)

Core: The (k-1) subgraph that is common 9"
between the joint graphs (@
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Multiplicity of Candidates (Edge growing)

@ Case 3: Core multiplicity

y- NN
a—a

oeeoe\e
b—a

+
.
B—a—a@ @‘e b—@
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Topological Equivalence
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Candidate Generation by Edge Growing

. G1 G2
e Given:
a b c d
O——0O O——O
Core Core

@Case1:a=candb=d

G3 =Merge(G1,G2)

a

b
O——O
S

Core ¢
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Candidate Generation by Edge Growing

@ Case2:a=candb=d

G3 = Merge(G1,G2) G3 = Merge(G1,G2)
a b a b
O——0 O—0
o—0 ~
Core a d Core d
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Candidate Generation by Edge Growing

@ Case3:a=candb=d

G3 = Merge(G1,G2) G3 = Merge(G1,G2)
a b a b
O——0 O——0
O——0 o
Core g d Core ¢
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Candidate Generation by Edge Growing

@ Case4:a=candb=d

G3 = Merge(G1,G2)

a b
O———O
Oo—0
Core g b
G3 = Merge(G1,G2) G3 = Merge(G1,G2)
a b a b
Core b Core g
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Graph Isomorphism

® A graph is isomorphic if it is topologically
equivalent to another graph
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Graph Isomorphism

® Test for graph isomorphism is needed:

— During candidate generation step, to determine
whether a candidate has been generated

— During candidate pruning step, to check whetherits
(k-1)-subgraphs are frequent

— During candidate counting, to checkwhethera
candidate is contained within another graph
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Graph Isomorphism

A1) AQ)
Bl(5) _ B|(6)
Bi(7) B(®8)
AB)  A@4)
A(2) A1)
B|(7) _ BI(6)
Bl5) Bl8)
AB)  A()

A1)
A(2)
AQ3)
A(4)
B(S)
B(6)
B(7)
B(8)

A(1)
A(2)
A@)
A(4)
B(S)
B(6)
B(7)
B(8)

A(1) A(2) AQ3) A(4) B(S) B(6) B(7) B(8)

1.1 1 0 1 0 0 O
1.1 0 1 0 1 0 O
1.0 1 1 0 0 1 0
o 1 1 1 0 0 0 1
1.0 0 0 1 1 1 0
o 1 0 0 1 1 0 1
o 0o 1 0 1 0 1 1
0o .0 0 1 0 1 1 1
A(1) A2) A(3) A(4) B(5) B(6) B(7) B(8)
1.1 0 1 0 1 0 O
1.1 1 0 0 0 1 o0
o 1 1 1 1 0 0 0
1.0 1 1 0 0 0 1
o 0o 1 0 1 0 1 1
1.0 0 0 0 1 1 1
o1 0 0 1 1 1 0
0.0 o0 1 1 1 0 1

* The same graph can be represented in many ways

02/03/2018
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Graph Isomorphism

® Use canonical labeling to handle isomorphism
— Map each graphinto an ordered string representation
(known as its code) such that two isomorphic graphs

will be mapped to the same canonical encoding

— Example:

¢ Lexicographically largest adjacency matrix

[0
0

— |1

0

String: 011011

02/03/2018

—_— - OO

1
1
0
1

01

1
|
0

Introduction to Data Mining

1
0
1

1
[S— [S— [S— O

0

1
1
0
0

0

e

N

Canonical: 111100
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Example of Canonical Labeling
(Kuramochi & Karypis, ICDM 2001)

® Graph:

@ Adjacency matrix representation:

id a b ¢ d
label || vo vo v1 o

a 0 e 0 O
b eo 0 e e
C 0 €p 0] 0
d 0 e 0 O
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Example of Canonical Labeling
(Kuramochi & Karypis, ICDM 2001)

® Order based on vertex degree:

id a ¢ d|b
label v U1 Vo | o
partition 0 1
a 0 0 0feo

c 0 0 0 ]eo

d 0 0 0fe

b € €p €1 0

® Order based on vertex labels:

id d al|lc]|b
label vo Vo | v1 | vo
partition 0 112
d 0 01]0|e

a 0 0 0 €p

c 0 010 |eo

b €1 € | €o 0
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Example of Canonical Labeling
(Kuramochi & Karypis, ICDM 2001)

® Find canonical label:

id d al|ec|b

label vo Vo | v1 | vo
partition 1|2

d 0 00 |e

a 0 01]0|eg

c 0 01]0|eg

b eg e |e| O

000 €1€p €p
(Canonical Label)
02/03/2018 Introduction

id a dl|c|b

label vo Vo | V1 | vo
partition 0 112

a 0O 010 |eg

d 0O 00 |e

c 0 0110 |eg

b €y €1 | €p 0

> 000 €p€4 €p

to Data Mining

85




