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Artificial Neural Networks (ANN)
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Output Y is 1 if at least two of the three inputs are equal to 1.
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Artificial Neural Networks (ANN)
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Y = sign(0.3X, +0.3X, +0.3X, —0.4)
here sign(x) 1 ifx=0
whnere sigr( x) =
8 “1 ifx<0
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Artificial Neural Networks (ANN)
® Modelis an assemblyof "ot

inter-connected nodes S, Black box output

and weighted links X “ node

X > Y

@ Output node sums up

each of its inputvalue Xa

according to the weights
of its links

e Compare outputnode
againstsome threshold t

Perceptron Model

d
Y = sign(E wX,-1t)

i=1

d

= sign (3w X)
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General Structure of ANN
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Artificial Neural Networks (ANN)

® Various types of neural network topology

— single-layered network (perceptron) versus
multi-layered network

— Feed-forward versus recurrent network

, Linear function , Sigmoid function
@ Various types of ", — P
activation functions (f) o
1-1 Tanh ffmction 1 ! Sign fl?nction 1
Y= f(3wX) N
7 os|
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Perceptron

@ Single layer network
— Contains only input and output nodes

@ Activation function: f= sign(wex)

® Applying model is straightforward

Y =s5ign(0.3X, +0.3X, +0.3X, -0.4)
1 ifx=0

wheresign(x)={ | ifx<0
-1 ifx<

~ X, =1,X,=0, X, =1 => y = sign(0.2) = 1
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Perceptron Learning Rule

@ Initialize the weights (wy, Wy, ..., Wy)
® Repeat

— For each training example (x;, y;)
+ Compute f(w, x;)
+ Update the weights:

W(k+1) = W(k) + A’|_yl — f(W(k)ax[)in

@ Until stopping condition is met
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Perceptron Learning Rule

® Weight update formula:

WD 0 +Ab/,~ —f(W(k),xl-)JXi ; A:learning rate

@ Intuition:
_ Update weight based on error: e =y, - f(w*,x,)]
— If y=f(x,w), e=0: no update needed

— If y>f(x,w), e=2: weight must be increased so
that f(x,w) will increase

— If y<f(x,w), e=-2: weight must be decreased so
that f(x,w) will decrease
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Example of Perceptron Learning
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Perceptron Learning Rule

@ Since f(w,x) is a linear
combination of input
variables, decision
boundary is linear "

0

® For nonlinearly separable problems, perceptron
learning algorithm will fail because no linear

hyperplane can separate the data perfectly
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Nonlinearly Separable Data
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Multilayer Neural Network

@ Hidden layers

— intermediary layers between input & output
layers

® More general activation functions (sigmoid, linear,
etc)
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Multi-layer Neural Network

® Multi-layer neural network can solve any type of
classification task involving nonlinear decision
surfaces
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Learning Multi-layer Neural Network

@ Can we apply perceptron learning rule to each
node, including hidden nodes?

— Perceptron learning rule computes error term
e = y-f(w,x) and updates weights accordingly

+ Problem: how to determine the true value of y for
hidden nodes?

— Approximate error in hidden nodes by error in
the output nodes
+ Problem:

— Not clear how adjustment in the hidden nodes affect overall
error

— No guarantee of convergence to optimal solution
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Gradient Descent for Multilayer NN

® Weight update: | &+ _ k0 _ ﬂ%

J J

® Errorfunction: ~_ 1<
E_Ez(ti _f(EW]xU)]

i=1

® Activation function f must be differentiable
® For sigmoid function:
WD = w0 4 Az(ti ~0,)0,(1-0,)x;

@ Stochastic gradient descent (update the weight
immediately)
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Gradient Descent for MultiLayer NN

°® For OUtpUt neurons’ Hiddizlayer Hidde; layer HiddELIayer
weightupdate formula is Neuron p Neuron x
the same as before Q w w Q
(gradientdescentfor et AT
perceptron) : Q :
Cor RO
qi iy
e For hidden neurons: Neuron q Neuron y
(k+1) _ . (k)
wy =w, +40,(1-0,) E O,W,x,;
2
Output neurons : 8, =o0,(1-0,)(t, - 0,)
Hidden neurons: 6, =o0,(1-0,) E O Wy
=3
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Design Issues in ANN

® Number of nodes in input layer
— One input node per binary/continuous attribute

— k orlog, k nodes for each categorical attribute
with k values

® Number of nodes in output layer
— One output for binary class problem

— k orlog, k nodes for k-class problem
® Number of nodes in hidden layer

@ Initial weights and biases
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Characteristics of ANN

@ Multilayer ANN are universal approximators butcould
suffer from overfitting if the network is too large

e Gradientdescent may converge to local minimum

@ Model building can be very time consuming, but testing
can be very fast

e Can handle redundantattributes because weights are
automatically learnt

@ Sensitive to noise in training data
e Difficult to handle missing attributes
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Recent Noteworthy Developments in ANN

® Use in deep learning and unsupervised feature
learning

— Seek to automatically learn a good

representation of the input from unlabeled
data

® Google Brain project

— Learned the concept of a ‘cat’ by looking at
unlabeled pictures from YouTube

— One billion connection network
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