

PROGRAMA DE CURSO

Código	Nomb	ore			
FI 4001	MECÁNICA CUANTICA				
Nombre er	n Inglés	}			
QUARTU	м ме	CHANICS			
SCT		Unidades Docentes	Horas de Cátedra	Horas Docencia Auxiliar	Horas de Trabajo Personal
9		15	3	4, 5	7,5
Requisitos			Carácter del Curso		
FI 3102 Física Moderna			Obligatorio para licenciatura en		
FI 3002 Métodos Matemáticos para la Física			física		

Resultados de Aprendizaje

Al final del curso el alumno demuestra que:

- Reconoce las diferencias fundamentales entre la mecánica clásica y cuántica.
- Obtiene autofunciones y autovalores de sistemas simples.
- Conceptualiza y aplica las restricciones implícitas entre operadores no compatibles.
- Identifica las restricciones físicas (condiciones de borde y continuidad) de las funciones de onda asociadas a sistemas cuánticos.
- Calcula probabilidad de transición.
- Resuelve en forma pertubativa sistemas cuanticos simples.

Actividades de Aprendizaje	Evaluación General
Las estrategias metodológicas que serán utilizadas son:	Las instancias de evaluación serán:

Temáticas

Número	Nombre	de la Unidad		Duración en
1	HITOS CONDUC MECANICA CU			1 semana
	Cont	Resultado de Aprend	izaje	Bibliografía
Cont		El estudiante: 1. Estima numericamer magnitudes asociad lfenomenos o sistem cuanticos.	as a	[1,2,3]

Número Nombre		re de la Unidad	Duración en
2	Co	ANICA ONDULATORIA Resultado de	2 semanas Bibliografía
supe cons 2. La ed Schrodir Interp la fun valor expe funcie	rposicion y sus ecuencias. cuación de	El estudiante: 1. Reconoce el vacio como medio dispersivo para las ondas de materia. 2. Aplica la Ec. de Schrodinger a sistemas simples (1D, 2D y 3D). Obtiene autoenergias de sistemas simples.	

Número	Nombre de la Unidad		Duración en
3	MEC	ANICA CUANTICA ' <i>A LA</i> <i>DIRAC</i> '	4 semanas
Conten	idos	Resultado de Aprendizaje	Referencias a la Bibliografía
notacion 'bra' y 'ke de valore (autovalo autovect Represe momento coordena 2. Postula Mecani Observ Relacio 3. Oscilado solucion represe energia de subio Valores expecta 4. Transfor unitaria evolucio desplaa Cuadro Heisen 5. Limites mecáni teorema y ecuado	et'. Ecuaciones es propios ores y ores). entaciones de um y adas. ados de la ca cuantica. ables compatibles. or armonico: en entacion de a. Operadores da y bajada. de acion. rmaciones s. Operador de n temporal, zamiento y 'boost'. s de Schrodinger y	notacion de Dirac como 2. Obtiene autofunciones (bases) asociadas a operadores simples. 3. Resuelve el oscilador armonico utilizando operdores de subida y bajada. 4. Reconoce operadores unitarios. 5. Reconoceoperadores compatibles e incompatibles.	[1-8] [1-8] [1-8] [1-8][1-8][1-8]

Número Nomb		ore de la Unidad	Duración en
4	MON	MENTUM ANGULAR	2,5 semanas
Conte	nidos	Resultado de Aprendizaje	Referencias a la Bibliografía
ma nuc de mc orb iso 2. Di mc Ele Au	momento agnetico: magneton clear y magneton Bohr. El mentum angular dital. El spin e spin. agonalizacioin del mentum angular. ementos de matriz. tofunciones del mentum angular	El estudiante: 1. Reconoce el álgebra asociada al momentum angular, obtiene sus atovalores y autofunciones. 2. Describe cuanticamente variables de spin y respuesta de momentos magneticos ante campos magneticos.	[1-8] [1-8]

	Número Nombre		e de la Unidad		Duración en Semanas	
	5	APLICACIO	NES ESPECIALES		5,5 semanas	
	С	Contenidos	Resultados de Aprendizajes de la Unidad		Referencias a la Bibliografía	
1. 2. 3. 4.	Niveles de Métodos y Métodos j	de hidrógenos. e Landau. variacionales. perturbativos ente del tiempo.	El estudiante: 1. Resuelve el átom hidrógeno. 2. Calcula valores dexpectación de retc. 3. Resuelve el problema carga sin spira presencia de un comagnético. 4. Aplica métodos variacionales a si simples. 5. Aplica métodos de perturbaciones problemer correccio soluciones conoci	N, p^2, ema de en ampo temas ra les a	[1-8] [2-6]	

Bibliografía General

[1] Quantum Mechanics, P. J. E. Peebles (Princeton Univ. Press, 1992) [2] Quantum Physics, Stephen Gasiorowicz, (Wiley; 3 edition, 2003).

[3] Quantum Mechanics: An Introduction, Walter Greiner (Springer; 4 edition, 2000). [4] Principles of Quantum Mechanics, R. Shankar, (Springer; 2 edition, 1994).

[5] Quantum Mechanics (2 Vols), Claude Cohen-Tannoudji, et al. (Wiley-Interscience, 1992) [6] Quantum Mechanics (2 Vols), Albert Messiah, (North Holland; 12th edition, 1981).

[7] Modern Quantum Mechanics, J. J. Sakurai (Addison Wesley; 2 edition, 1994).

[8] Quantum Mechanics: A Modern Development, Leslie E. Ballentine (World Scientific

Publ. Co., 1998).

Vigencia desde:	Año 2009
Elaborado por:	Hugo Arellano, con la revisión de Felipe Barra
Revisado Por	Álvaro Nuñez. Área de Desarrollo Docente- ADD