

Auxiliar 8 Ondas Propagativas

Profesor: Roberto Rondanelli Auxiliares: Edgardo Rosas, Leonardo Leiva & Patricio Peralta 19 de noviembre de 2018

Problema 1

- a Demuestre que $y=x^2+v^2t^2$ es solución de la ecuación de ondas. Muestre que puede escribirse de la forma y=f(x-vt)+g(x+vt).
- b Lo mismo para y = sen(x)cos(vt).

Problema 2

Se tienen dos pulsos descritos por las siguientes ecuaciones:

$$y_1 = \frac{5}{(3x - 4t)^2 + 2}$$
$$y_2 = -\frac{5}{(3x + 4t - 6)^2 + 2}$$

- a ¿En qué dirección viaja cada pulso?
- b ¿En qué instante se cancelan los dos pulsos en todos los puntos?
- c ¿En cuál punto siempre se cancelan los pulsos?

Problema 3

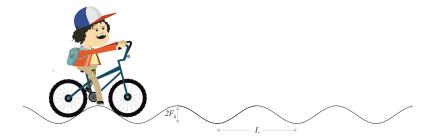
Un pulso se mueve en la dirección x en un sistema de varillas acopladas por torsión, todas las varillas de igual largo L, separación ∇ , y de diámetro muy pequeño. El pulso esta descrito por:

$$\theta(x,t) = Ae^{-(ax+bt)^2}$$
; $A, a, b > 0$

Determine: (a) La dirección de movimiento del pulso. (b) La velocidad de propagación del pulso. (c) La constante de torsión T entre las varillas.

Auxiliar 8

Problema 4


Dos cuerdas de densidad lineal de masa R y 2R se unen entre sí, con la cuerda de mayor densidad en el lado derecho. Los extremos de la cuerda están unidos a masas M. Se dispone de dos pivotes, separados una distancia 2L, sobre los cuales posa la cuerda en forma horizontal.

- a En cierto instante se genera en el lado izquierdo una onda armónica de frecuencia angular ω y longitud de onda λ . ¿Que ocurre con las siguientes cantidades al pasar de un medio a otro? (i) Frecuencia (ii) Velocidad (iii) Longitud de onda (iv) Período
- b En un otro instante se generan dos pulsos idénticos y simétricos en cada uno de los extremos de la cuerda. Determine la distancia, medida desde el extremo izquierdo de la cuerda, donde se encuentran los puntos centrales de ambos pulsos.

Problema 5

Una bicicleta se encuentra circulando con una velocidad constante v_0 sobre un camino recto cuya superficie presenta ondulaciones verticales (calamina). El camino se puede modelar como un función seno con una distancia entre alturas máxima L y una diferencia máxima de alturas $2F_0$. La suspensión se puede modelar como un amortiguador con un coeficiente c y un resorte de rigidez k y largo natural lo. La masa del ciclista más la bicicleta es M.

- a Muestre que la frecuencia de forzamiento ω del acoplado está dada por $\omega = \frac{2\pi v}{L}$.
- b Encuentre la ecuación de movimiento para la posición y del acoplado. Use un cambio de variable para que la fuerza de gravedad y la longitud natural del resorte no aparezcan explícitamente en la ecuación de movimiento.
- c Dustin al interior de su mochila guarda un huevo muy frágil y de masa despreciable, ¿Para qué valores de la velocidad horizontal v_0 el huevo se quiebra, si la máxima aceleración que puede soportar el huevo es 2g? Considere para esta parte que no hay amortiguamiento.

Auxiliar 8 2