

Auxiliar 1: Métodos Experimentales

Profesor: René Garreaud S.

Auxiliares: Martín Bataille, M. Ignacia Reveco, Lucas González

24 de septiembre 2018

- ${f P1.}$ Se realiza una serie de medidas de tensión T en un hilo. Todos los datos se anotan en la tabla siguiente.
 - a) Encuentre el valor promedio \overline{T} y la desviación estándar σ .
 - b) Encuentre qué porcentaje de medidas tienen valores fuera de los intervalos $[\overline{T} \sigma, \overline{T} + \sigma]$ y $[\overline{T} 2\sigma, \overline{T} + 2\sigma]$. Compare a lo esperado teóricamente.

Medida n	Tensión (N)	Observaciones
1	14,7	
2	16,9	
3	12,5	
4	16,2	
5	14,0	
6	15,1	
7	194	Medida mal realizada: me distraje
8	12,7	
9	10,7	
10	14,9	

P2. Tipos de errores y propagación de errores

¿Qué es un error aleatorio? ¿Qué es un error sistemático?

Formulas de propagación de errores:

$$(a \pm \delta a) + (b \pm \delta b) = (a + b) \pm (\delta a + \delta b)$$

$$(a \pm \delta a) - (b \pm \delta b) = (a - b) \pm (\delta a + \delta b)$$

$$(a \pm \delta a)(b \pm \delta b) = (ab) \pm (ab)\sqrt{\frac{\delta a^2}{a} + \frac{\delta b^2}{b}}$$

$$\frac{(a \pm \delta a)}{(b \pm \delta b)} = \frac{a}{b} \pm \frac{a}{b}\sqrt{\frac{\delta a^2}{a} + \frac{\delta b^2}{b}}$$

a) Una puerta tiene una altura $H=2,00\pm0,03m$. La puerta tiene una perilla ubicada a una altura $h=0,88\pm0,04m$ (Desde la base de la puerta). ¿Cuál es la distancia desde la perilla de la puerta hasta la parte más alta?

- b) Un péndulo simple es lo que usaremos para estimar la aceleración de gravedad, usando una de sus bellas propiedades que dice que su periodo T viene dado por $T=2\pi\sqrt{L/g}$. Hecho el experimento se obtuvo la siguiente medida para su periodo, $T=1,51\pm0,03s$ y la longitud del pendulo es $L=56,7\pm0,2cm$. Calcule el valor resultante para g, su error absoluto y relativo.
- **P3.** Un objeto se deja caer desde cierta altura bajo el efecto de la gravedad, que tiene un valor de g=9.8 m/s^2 . Se ha medido un tiempo de $t^*=12\pm0.2s$. Determine la distancia recorrida por el objeto en un tiempo t^* .
- P4. Indique el número de cifras significativas y escriba la forma correcta de presentar las siguientes cantidades:
 - a) $23,34 \pm 0,19$
 - b) $234,56 \pm 12,21$
 - c) 257.9 ± 10.51
 - d) $5474,6304 \pm 288,44507$