EL7021: Deep Drive
Computer Vision Applications for Autonomous Cars

Departamento de Ingenieria Eléctrica
Advanced Mining Technology Center (AMTC)
Universidad de Chile

Computer Vision in Autonomous Cars

Computer Vision in Autonomous Cars

Three main areas of research:

® Scene understanding.
e State estimation.
e Autonomous Driving.

Scene Understanding

Objective: Provide environment related information to
produce correct driving behavior.

Tasks:

® Object Recognition
® Semantic Segmentation

Static nature allows the use of image databases (test
performance holds as long as the test data distributes similar)

—

YOLO: Real-Time Object Detection

Object recognition was previously splitted between object detection and
object classification.

Brute force sliding windows cannot be used in real time, since performance
and execution times depend strongly on the window stride.

Yoo

YOLO: Real-Time Object Detection

R-CNN Fast R-CNN Faster R-CNN YOLO
Embedded ROI X X v v
Generation
Inferences / 2000 1 1 1
Image
End-to-end X X v v
Global X X X v
Information

ﬁ

R-CNN

| warped region

aeroplane? no.

person? yes.

————————————————————

tvmonitor? no.

2. Extract region 3. Compute 4. Classify
image proposals (~2k) CNN features regions

—

R-CNN*

Fast R-CNN

R bbox
softmax regressor

. || | Bo! "3FC I— IFC
S pooling
Bray layer [FCS

Conv '=-\ Rol feature
feature map vector . .achiii

ConvNet

Faster R-CNN

classifier

Rol pooling

feature maps

conv layers /

T 77

YOLO v1: Real-Time Object Detection

i -
. X7]
=l [ji im0

YOLO v1: Real-Time Object Detection

SegNet: A Deep Encoder-Decoder Architecture for
Image Segmentation

SegNet: A Deep Encoder-Decoder Architecture for

RGB Image

Image Segmentation

Convolutional Encoder-Decoder

Pooling Indices

- Conv + Batch Normalisation + RelU
B Pooling I Upsampling Softmax

Output

Segmentation

SegNet: A Deep Encoder-Decoder Architecture for
Image Segmentation

Ground Truth

SegNet

DeeplLab-LargeFOV

State Estimation

Objective: Integrate visual information to produce state related
information.

Tasks:

e Visual Odometry
e Visual SLAM

Assumes markov processes. However, since actions are
independent from the system, video databases can be used.

#

Visual Odometry

‘A

Visual Odometry

Visual Odometry

=
¥{k

%
X
-

Visual Odometry

Visual SLAM

http://www.youtube.com/watch?v=Q3EMgGI6E5s

Autonomous Driving

Objective: Produce steering actions for autonomous driving.

The most integrated and complex task for autonomous car.
Several approaches exist.

Assumes markov processes. The system’s actions affect the
chain (data distribution). The use of databases is NOT
representative of test performance.

Visual Navigation (Imitation Learning)

\ \
3 \\ \{1 \\ \13 \
’[1> K~~l]
13 N - 13 3 - 3 dense fens
\\ 3 \|
384 \ 384 _ 256 oo
Max
Max Max pooling 4996 40%
pooling pooling

7r9(ut|ot)

Visual Navigation (Imitation Learning)

training supervised

| : 779(11t|0t)
data earning

Visual Navigation (Imitation Learning)

-~ = training trajectory
. — mp expected trajectory

Visual Navigation (Imitation Learning)

Why does it not work ???

(x),

Policy TT(u| 0,8) was trained to copy m__ (u]o) under p

train
more specifically x. ~ p(x_,, u, ,).

Since during test u ~ 1T(u|0,0), the state distributions are expected to differ.
This implies that test performance is usually really low (especially, in high
dimensional problems).

Visual Navigation (Imitation Learning)

DAgger: Dataset Aggregation

goal: collect training data from p,,(0;) instead of pgata(0t)
how? just run mg(u¢|oy)

but need labels uy!

1. train mg(u¢|o¢) from human data D = {0y, uy,...,0n,un}
2. run 7y (uz|os) to get dataset D, = {01,...,0n}

3. Ask human to label D, with actions u;

4. Aggregate: D < DU D,

Deep Learning Frameworks

Tensorflow

C++ written. Provides an API for several languages.
Mature library. Active community.

Focus on deployment

PyTorch

C++ written. Python interface.
Relatively new. Growing community.
Similar to numpy, easy to use.

Darknet

C written. C, C++, and python interfaces.
Lightweight and the easiest to deploy.
Single contributor.

#

