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INTRODUCTION  

The motion of a fluid can be characterised by different regimes, depending on the 

specific feature that we are interested in. Thus, if we are interested in the flow dependency 

on the time, it could be steady (the flow does not change with time) or unsteady (the flow 

depends on the time). If we are interested in the changes in the space, it could be uniform 

(velocity and flow section do not change in space), or spatially varied. In the case of spatially 

varied flow, when the variation is small, the flow is gradually varied. In this case, the 

curvature of the streamlines is small. On the contrary, when the streamlines have strong 

curvature, the flow is named rapidly varied. A property of the gradually varied flows is 

that the pressure distribution can be considered as hydrostatic. There are many other 

features of the flow that we could want to study, and we could define other regimes. 

However, we will focus in the motion of the fluid particles. That motion can be ordered, the 

flow moving in “layers”, and the flow regime is called laminar. On the contrary, the motion 

of the particles can be disorganised or random and the regime is named turbulent. Of 

course, there is not an abrupt change from the laminar to the turbulent regime, but it goes 

through a transition laminar-turbulent.  

Osborne Reynolds published in 1883 an article in which he described the motion of 

water in a tube in which he injected dye. The experimental facility used by Reynolds and 

depicted in the article is shown in Fig. 1. As a curiosity, Fig. 2 shows the original apparatus 

used by Reynolds, currently in the University of Manchester. 

For low water velocities, the dye injected in the upstream end of the tube followed a 

well-defined linear trajectory, as shown in Fig. 3 (taken from Reynold’s paper). Reynolds 

called this motion “direct”. For higher velocities, after some distance from the entrance of 

the tube, the dye “at once mix up with the surrounding water, and fill the rest of the tube 

with a mass of coloured water”, as shown in Fig. 4. But the most interesting feature was 

observed when the tube was illuminated with an “electric spark”: the dye showed “more or 

less distinct curls, showing eddies”, as those sketched in Fig. 5. Because of this eddy 
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pattern, Reynolds called this motion also “sinuous”. In the current language, we call 

“laminar” and “turbulent” regimes what Reynolds called “direct” and “sinuous” motions. 

He also found the limits at which the regime ceased to be laminar and become turbulent 

was proportional to the tube diameter 𝐷, the mean flow velocity 𝑈, and inversely 

proportional to the kinematic viscosity    , that is to say 𝑈𝐷 ⁄ . This dimensionless 

parameter is known as the Reynolds number: 

𝑅𝑒 =
𝑈𝐷


 (1) 

The accepted values of the Reynolds numbers for the limits of the different regimes 

are: 

- Laminar regime : 𝑅𝑒 < 2000 

Fig. 1.- Experimental set-up of Reynold´s experiment, taken from his 

paper from 1883. 
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- Laminar-Turbulent transition regime : 2000 < 𝑅𝑒 < 4000 

- Turbulent regime : 𝑅𝑒 > 4000 

 

Presence of eddies in the flow was not something new when Reynolds performed his 

experiment. The eddy motions in water flows were already depicted in a series of drawings 

by Leonardo da Vinci, as it is shown in Fig. 6, who in the description of the motion of the 

Fig. 2.- The original experimental facility used by Reynolds, now 

at the University of Manchester (Picture taken in May, 2015) 
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surface of the water stated that it has two components, one given by the “impetus” of the 

main motion and another associated to the eddies. Leonardo was the first one that used 

the term turbolenza in about 1550. 

 Existence of eddies in the flow has an important effect in the flow resistance. Before 

than Reynolds’ experiment was already known that for low velocities (i.e., laminar regime), 

the flow resistance was proportional to the mean velocity (or discharge), and for higher 

velocities (i.e., turbulent regime) it was proportional to the square of the mean velocity.  

 

 

WHAT IS TURBULENCE? 

It is difficult to answer this question. As the velocity is continuously changing (o 

fluctuating) in time, we can say that it is an unsteady phenomenon. However, usually we 

are not interested in the instantaneous values of the velocity (or pressure) of a turbulent 

flow, but we want to know some time averaged values. Thus, the continuous variation in 

Fig. 3.- Flow pattern of the dye at low velocities. “Direct” 

motion or laminar regime. 

Fig. 4.- Flow pattern of the dye at high velocities. 

“Sinuous” motion or turbulent regime. 

Fig. 5.- Flow pattern of the dye in the “sinuous” motion or 

turbulent regime when illuminated with a sparkling light. 

Reynolds observed the eddy or curly motion of the fluid. 
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time of the flow properties has originated a statistical description of the flow in terms of 

temporal mean values. 

Due to the complexity of the turbulent flows, most of what we know about them 

comes from experiments. By means of experiments, using visualization techniques or direct 

measurements of the variables that we are interested in (usually, velocity and pressure), 

we can get a general description of the processes involved in the turbulent flows. The use 

of the experimental approach does not mean that theories have not been developed, or that 

are of lesser value than the experiments. On the contrary, the theoretical analysis guide 

us regarding the variables that need to be measured for a better understanding of the 

turbulence phenomena. Obviously, as in all branches of science, the interaction between 

theory and experiments is necessary, and both of them help to increase our understanding 

of the turbulence. It is important to remark that turbulence is still an open problem. That 

is to say that currently the problem has not been solved starting from the principles of the 

physics. Thus, any theory on turbulence will always rely on some experimental data. 

Up to now, there is not a definition of turbulence that can describe it completely. Von 

Karman (1937) defined it as “an irregular motion which in general makes its appearance 

in fluids, gaseous or liquid, when they flow past solid surfaces or even when neighbouring 

streams of the same fluid flow past or over one another”. According to Hinze (1959) 

“turbulent fluid motion is an irregular condition of the flow in which the various quantities 

show a random variation with time and space coordinates, so that statistically distinct 

average values can be discerned”. This definition has a couple of consequences: the 

variation must be space-temporal, and it can be studied by means of statistical analysis. 

We can look for the definition given by different dictionaries, for example: 

Fig. 6.- Drawing of Leonardo da Vinci showing the presence of 

eddies  in  a flow with free Surface. 
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- English 

o Oxford Dictionary (https://en.oxforddictionaries.com/): “Violent or unsteady 

movement of air or water, or of some other fluid” 

o Dictionary.com (http://www.dictionary.com): “The haphazard secondary motion 

caused by eddies within a moving fluid” 

o Merriam-Webster Dictionary: “Departure in a fluid from a smooth flow” 

 

- Italian 

o Dizionario Italiano (www.dizionario-italiano.it): “Fenomeno per cui in un fluido 

liquido o gassoso in moto, in determinate condizioni, il moto delle particelle 

elementari cessa di essere regolare e diventa soggetto a forti fluttuazioni della 

velocità e a moti vorticosi e a mancanza di regolarità nella traiettoria delle 

particelle” 

o Grande Dizionario Italiano di Aldo Gabrielli (www.grandidizionari.it): “Moto 

irregolare generalmente rilevabile nei fluidi” 

o Dizionari di Italiano Corriere della Sera 

(http://dizionari.corriere.it/dizionario_italiano): “Moto disordinato di un fluido, con 

formazione di vortici”  

 

- Spanish 

o Diccionario de la Real Academia Española (www.rae.es): “Zona en que se 

desarrolla un movimiento turbulento”. 

o Turbulento: “Dicho del movimiento: Propio de un fluido en el que la presión y la 

velocidad fluctúan muy irregularmente en cada punto, con la consiguiente 

formación de remolinos.” 

As it can be seen, even the definition of the word turbulence in different languages 

and dictionaries is not unique. However, from the definitions presented before we can group 

words that transmit more or less the same meaning. For example, we find: 

- “Violent or unsteady movement”, “forti fluttuazioni della velocità”,  

- “Il moto delle particelle elementari cessa di essere regolare”, “Moto irregolare”, 

“Moto disordinato”, “la presión y la velocidad fluctúan muy irregularmente” 

- “Eddies”, “moti vorticosi”, “Moto …con formazione di vortici”, “movimiento …con 

… formación de remolinos” 

We note that the concept of eddies, vortici, remolinos, appears in several definitions. 

As we will see later, this is a very important concept in turbulence, used to model turbulent 

flows. 

https://en.oxforddictionaries.com/
http://www.dictionary.com/
http://www.dizionario-italiano.it/
http://www.grandidizionari.it/
http://dizionari.corriere.it/dizionario_italiano
http://www.rae.es/
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Given the difficulties to define turbulence, it is easier to give some characteristics of 

turbulent motion. Thus, according to Tennekes and Lumley (1972), the following 

characteristics can be mentioned: 

Turbulence characterises a kind of flow: Turbulence is not a property of a fluid, it is a kind 

of flow. For this reason, the most important characteristics of turbulent flows are not 

controlled by the molecular properties of the flow. 

Large Reynolds numbers: Turbulent flows occur at high Reynolds numbers. Turbulence 

often is originated by the instability of a laminar flow when the Reynolds number surpasses 

a critical value. In turbulent flows, the effect of the inertia of the fluid motion overcomes 

the stabilizing effect of the viscous forces. 

Continuum: Turbulence is a continuum phenomenon, governed by the equations of fluid 

mechanics. The smallest length scales that can arise in a turbulent flow are much larger 

than any molecular length scale. 

Irregularity: As it is observed in Reynolds’ experiment, the trajectory of a fluid particle is 

highly irregular, making practically impossible to describe it by means of deterministic 

analysis, and statistical methods are used. 

Diffusivity: Turbulent flows are highly diffusive. For this reason, exchange rates of mass, 

momentum and energy are much higher than those associated to laminar flows. From the 

applications point of view, this is the most important characteristic of turbulent flows. 

Dissipation: Turbulent flows always dissipate energy. The work performed by the viscous 

stresses when deform a fluid element increases the internal energy of the fluid in detriment 

of the turbulent kinetic energy. Turbulence requires a continuous supply of energy in order 

to sustain the viscous losses. If energy is not supplied, the turbulence decays.    

Tri-dimensional fluctuations of vorticity: Turbulence is rotational and tri-dimensional. It 

is characterized by large vorticity fluctuations. An important mechanism for the 

maintenance of the vorticity is “vortex stretching”. Turbulent fluctuations of vorticity 

cannot be sustained by themselves in two-dimensional flows. 

 

 

 

REVIEW OF THE BASIC EQUATIONS OF FLUID MECHANICS 

 General speaking, there two approaches to analyse fluid flows: the integral approach 

and the differential approach. In the integral approach we use a control volume to 

characterise the fluid flow (or the effect of the fluid flow) in a finite region of the space. 

Some gross quantities are obtained when this approach is used: mean velocity trough a 
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section, force acting on a surface, total energy exchange, etc. On the contrary, in the 

differential approach the information that we get is in a point within the flow domain. 

 Up to now, the main principles of the physics applied to the analysis of the fluid 

flows using the integral approach. Those principles are: conservation of matter, Newton´s 

second law, and the first principle of thermodynamics. Without entering in details, the 

resulting equations that describes those principles, when applied to an incompressible 

fluid, are: 

Continuity equation: It describes mathematically the law of conservation of the matter. 

As the amount of matter remains constant (this principle is valid in classical mechanics), 

for a fluid with constant density, the volume rate of fluid  that enters to the control volume 

minus the volume rate that exits is equal to the variation of volume of fluid in the control 

volume, i.e.: 

𝑑𝑉

𝑑𝑡
= 𝑄𝑖 − 𝑄𝑜 (1) 

In Eq. 1, 𝑉 represents the volume of the fluid inside the control volume, 𝑡 is the time, 

𝑄 is the volume rate or discharge, the sub-index 𝑖 indicates the input to the control volume 

and the sub-index 𝑜 the output.  

If the discharge 𝑄 goes through a section with an area normal to the flow equal to 𝐴, 

the average velocity is defined as   

𝑣 =
𝑄

𝐴
 (2) 

 In a steady state flow there is not variation in time, 𝑑𝑉 𝑑𝑡⁄ = 0, and Eq. 1 is simplified 

to:  

𝑄𝑖 = 𝑄𝑜 (3) 

 Eq. 3 indicates that the flow that enters to the control volume is equal to the output 

flow. 
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The classical example where Eq. 1 is applied corresponds to the flow through and orifice in 

a tank. Referred to Fig. 7, the question is to determine the variation of the water depth (ℎ) 

in the tank in function of the time, if initially the flow depth is ℎ0. The transverse area of 

the tank is 𝐴𝑇 and the area of the orifice is 𝐴𝑜. This simple example is repeated here to 

stress two isues: 

i) The volume of fluid not necessarily is equal to the control volume,𝑉𝐶, depicted as 

the segmented line in Fig. 7. 

ii) Eq. 1 by itself is not enough to solve the problem. 

 The volume of fluid (𝑉) in the control volume 𝑉𝐶 is 𝑉 = ℎ𝐴𝑇. There is not flow rate 

entering to 𝑉𝐶, so 𝑄𝑖 = 0, and the flow rate exiting the control volume is 𝑄𝑜 = 𝑣𝐴𝑜. Thus, 

Eq. 1 can be written as:  

𝑑

𝑑𝑡
(ℎ𝐴𝑇) = −𝑣𝐴𝑜 (4) 

 

 We cannot go further with Eq. 4 without additional information. Up to now, we are 

having two unknowns: ℎ and 𝑣, but only one equation (Eq. 4). We need another equation 

involving ℎ and 𝑣. That equation will be provided by the energy equation. But it is possible 

to get a result if we remember the experimental work by Torricelli, who obtained:  

𝑣 = √2𝑔ℎ (5) 

  Replacing Eq. 5 in Eq. 4, we obtain:  

Fig. 7.- Flow through an orifice 

ℎ 

𝑉𝐶 

𝑣 
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𝑑ℎ

𝑑𝑡
= −

𝐴𝑜

𝐴𝑇
√2𝑔ℎ (6) 

  

Eq. 6 can be easily integrated. The integration constant is obtained from the initial 

condition 𝑡 = 0, ℎ = ℎ0. 

 

Energy general equation: It is obtained from the first principle of the thermodynamics, 

which states that the variation of energy in a system of particles, ∆𝐸, is equal to the heat 

supplied to the system, ∆�̂� , minus the mechanical work done by the system, ∆𝑊. The rate 

of variation of energy can be written as: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑑𝐸

𝑑𝑡
=

𝑑�̂�

𝑑𝑡
−

𝑑𝑊

𝑑𝑡
 (7) 

 

 The energy of the fluids particles is given by three components:  

𝐸 = 𝑈 + 𝐸𝑃 + 𝐸𝐶 (8) 

 

where 𝑈 is the internal energy, 𝐸𝑃 is the potential energy and 𝐸𝐶 is the kinetic energy. They 

are expressed as:  

𝑈 = 𝑚𝑢 𝐸𝑃 = 𝑚𝑔𝑧 𝐸𝐶 =
1

2
𝑚𝑣2 (9) 

∆𝐸 

∆�̂� 

∆𝑊 

Fig. 8.- First principle of thermodynamics:  Variation of energy 
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where 𝑚 is the mass, 𝑢 is the specific internal energy, 𝑔 is the acceleration due to gravity, 

𝑧 is the vertical distance from an arbitrary reference level, and 𝑣 the velocity. The specific 

energy (defined as energy per unit mass, 𝑒 = 𝐸 𝑚⁄ ), of the system is:  

𝑒 = 𝑢 + 𝑔𝑧 +
𝑣2

2
 (10) 

 It can be shown that the variation of energy of the system can be expressed as the 

change of energy per unit time of the fluid in the control volume, plus the flow of energy 

through the surfaces 𝑆𝐶 that define 𝑉𝐶. Mathematically, it is written as:  

𝜕

𝜕𝑡
∫ 𝜌𝑒𝑑𝑉

𝑉𝐶

+ ∫ 𝜌𝑒�⃗� ∙ �̂�𝑑𝑆
𝑆𝐶

=
𝑑�̂�

𝑑𝑡
−

𝑑𝑊

𝑑𝑡
 (11) 

 The work 𝑊 can be divided in two main components: 1) the work that the fluid has 

to do when it flows (it has to overcome the forces arising from the pressure and shear 

stresses), and 2) the external work (also called “shaft work”). The external work is that 

done to move the shaft of a turbine (work towards the exterior of the system, work done by 

the fluid, positive), or that supplied by a pump (work towards the interior of the system, 

work done on the fluid,    negative).  Thus:  

𝑊 = 𝑊𝐸 + 𝑊𝑝 + 𝑊𝜏 (12) 

where the sub-indices  𝐸, 𝑝 and 𝜏 stand for “external”, “pressure” and “shear stresses”, 

respectively.  

It is possible to work with the term associated to the pressure:  

𝑊𝑝 = ∫ 𝑑𝑊𝑝 = ∫ �⃗�𝑝 ∙ 𝑑𝑟 = ∫ 𝑝𝑑𝑆�̂� ∙ 𝑑𝑟 (13) 

𝑑𝑊𝑝

𝑑𝑡
= ∫ 𝑝𝑑𝑆�̂� ∙

𝑑𝑟

𝑑𝑡
= ∫ 𝑝�⃗� ∙ �̂�𝑑𝑆

𝑆𝐶

 (14) 

 The work associated to the shear stresses demands to know an expression for the 

shear stress, and we will work on it later. Thus, Eq. 11 becomes:  

𝜕

𝜕𝑡
∫ 𝜌𝑒𝑑𝑉

𝑉𝐶

+ ∫ 𝜌𝑒�⃗� ∙ �̂�𝑑𝑆
𝑆𝐶

=
𝑑�̂�

𝑑𝑡
−

𝑑𝑊𝐸

𝑑𝑡
− ∫ 𝑝�⃗� ∙ �̂�𝑑𝑆

𝑆𝐶

−
𝑑𝑊𝜏

𝑑𝑡
 (15) 

  

Introducing the expression for the specific energy 𝑒 in the second term of the left hand side 

of Eq. 15:  
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𝜕

𝜕𝑡
∫ 𝜌𝑒𝑑𝑉

𝑉𝐶

+ ∫ 𝜌 (𝑢 + 𝑔𝑧 +
𝑣2

2
) �⃗� ∙ �̂�𝑑𝑆

𝑆𝐶

=
𝑑�̂�

𝑑𝑡
−

𝑑𝑊𝐸

𝑑𝑡
− ∫ 𝑝�⃗� ∙ �̂�𝑑𝑆

𝑆𝐶

−
𝑑𝑊𝜏

𝑑𝑡
 (16) 

 

 Joining the terms that are integrated over 𝑆𝐶:  

𝜕

𝜕𝑡
∫ 𝜌𝑒𝑑𝑉

𝑉𝐶

+ ∫ 𝜌 (𝑢 + 𝑔𝑧 +
𝑝

𝜌
+

𝑣2

2
) �⃗� ∙ �̂�𝑑𝑆

𝑆𝐶

=
𝑑�̂�

𝑑𝑡
−

𝑑𝑊𝐸

𝑑𝑡
−

𝑑𝑊𝜏

𝑑𝑡
 (17) 

 

 We can see that the sum of Bernoulli was formed in the second term of Eq. 17, and 

it can be written as:  

𝜕

𝜕𝑡
∫ 𝜌𝑒𝑑𝑉

𝑉𝐶

+ ∫ 𝜌𝑔 (
𝑢

𝑔
+ 𝐵) �⃗� ∙ �̂�𝑑𝑆

𝑆𝐶

=
𝑑�̂�

𝑑𝑡
−

𝑑𝑊𝐸

𝑑𝑡
−

𝑑𝑊𝜏

𝑑𝑡
 (18) 

 

where  

𝐵 = 𝑧 +
𝑝

𝜌𝑔
+

𝑣2

2𝑔
 (19) 

 Eq. 17 (or Eq. 18) is called the “energy general equation”. It can be applied to any 

flow regime. Its only limitation is given by the potential energy should derive from a 

gravitational field (Eq. 9). 

 Let’s simplify Eq. 18 assuming steady flow and considering a stream tube as control 

volume, as shown in Fig. 9. The control volume has three surfaces: section 1 (entrance), 

section 2 (exit) and the mantle, with surface areas 𝑆1, 𝑆2 and 𝑆𝑚, respectively. Thus, the 

surface 𝑆𝐶 that defines the control volume 𝑉𝐶 can be written as 𝑆𝐶 = 𝑆1 + 𝑆2 + 𝑆𝑚. As the 

mantle is tangent to the velocity vectors, there is not flow through its surface, and the 

integral over the surface of Eq. 18 is reduced to:  

∫ 𝜌𝑔 (
𝑢

𝑔
+ 𝐵) �⃗� ∙ �̂�𝑑𝑆

𝑆𝐶

=  ∫ 𝜌𝑔 (
𝑢

𝑔
+ 𝐵) �⃗� ∙ �̂�𝑑𝑆

𝑆1

+ ∫ 𝜌𝑔 (
𝑢

𝑔
+ 𝐵) �⃗� ∙ �̂�𝑑𝑆

𝑆2

 (20) 

 For simplicity, we can take that the velocity vector at sections 1 and 2 is normal to 

the surface, that is to say that in section 1: �⃗� = 𝑣1(−�̂�1), and in section 2: �⃗� = 𝑣2�̂�2. Thus, 

Eq. 20 becomes:  

∫ 𝜌𝑔 (
𝑢

𝑔
+ 𝐵) �⃗� ∙ �̂�𝑑𝑆

𝑆𝐶

=  − ∫ 𝜌𝑔 (
𝑢

𝑔
+ 𝐵) 𝑣1𝑑𝑆

𝑆1

+ ∫ 𝜌𝑔 (
𝑢

𝑔
+ 𝐵) 𝑣2𝑑𝑆

𝑆2

 (21) 
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 Now, we will do a strong assumption (but we will be able to overcome it, so it will 

not be a problem in the future): let’s assume that the flow properties are constant at each 

section of the stream flow (they are constant in the section, but can change from one section 

to another). If this is the case, 𝑢, 𝑝 𝜌⁄  and 𝑣, do not depend on 𝑑𝑆 and we can take the 

𝜌𝑔(𝑢 + 𝐵)𝑣 out of the integral:  

∫ 𝜌𝑔 (
𝑢

𝑔
+ 𝐵) �⃗� ∙ �̂�𝑑𝑆

𝑆𝐶

=  −𝜌𝑔 (
𝑢1

𝑔
+ 𝐵1) 𝑣1 ∫ 𝑑𝑆

𝑆1

+ 𝜌𝑔 (
𝑢2

𝑔
+ 𝐵2) 𝑣2 ∫ 𝑑𝑆

𝑆2

 (22) 

 

∫ 𝜌𝑔 (
𝑢

𝑔
+ 𝐵) �⃗� ∙ �̂�𝑑𝑆

𝑆𝐶

=  −𝜌𝑔 (
𝑢1

𝑔
+ 𝐵1) 𝑣1𝑆1 + 𝜌𝑔 (

𝑢2

𝑔
+ 𝐵2) 𝑣2𝑆2 (23) 

 

But 𝑣1𝑆1 is the discharge at section 1 which, by continuity, is equal to the discharge 

at section 2, i.e.: 𝑣1𝑆1 = 𝑣2𝑆2 = 𝑄, and the integral over the surfaces is reduced to a simpler 

expression:  

∫ 𝜌𝑔 (
𝑢

𝑔
+ 𝐵) �⃗� ∙ �̂�𝑑𝑆

𝑆𝐶

=  𝜌𝑔𝑄 (
𝑢2 − 𝑢1

𝑔
+ 𝐵2 − 𝐵1) (24) 

 Thus, for a steady flow through a stream tube with one entrance and one exit (as in 

Fig. 9), the general equation of the energy is written as:  

𝜌𝑔𝑄 (
𝑢2 − 𝑢1

𝑔
+ 𝐵2 − 𝐵1) =

𝑑�̂�

𝑑𝑡
−

𝑑𝑊𝐸

𝑑𝑡
−

𝑑𝑊𝜏

𝑑𝑡
 (25) 

�̂�1 

�̂�2 

�⃗�1 

�⃗�2 
𝑆1 

𝑆2 

𝑆𝑚 

SECTION 1 

SECTION 2 

Fig. 9.- Application of the energy general equation to a streamtube 
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For flows of liquids (the most common in civil and environmental engineering), the 

variation of internal energy is negligible, and we can write:  

𝜌𝑔𝑄(𝐵2 − 𝐵1) =
𝑑�̂�

𝑑𝑡
−

𝑑𝑊𝐸

𝑑𝑡
−

𝑑𝑊𝜏

𝑑𝑡
 (26) 

For adiabatic flows (no heat exchange) of ideal fluids without work done by the fluid, 

we obtain that the Bernoulli remains constant. :  

𝐵2 = 𝐵1 = 𝐶𝑜𝑛𝑠𝑡. (27) 

At this point, an objection could be made to the development of Eq. 26 when it is 

applied to real fluids. If the stream tube is considered to be a pipe, due to the fluid viscosity, 

the velocity of the fluid particles in contact with the wall of the pipe is zero and maximum 

at the axis of the pipe, violating the assumption of constant velocity made to take the 

Bernoulli out of the surface integral and obtain Eq. 25, which contains a term associated 

to the shear stress. In order to avoid this inconsistency, the Bernoulli equation (Eq. 19) 

needs to be modified. Let’s consider a flow with parallel streamlines (as the flow in a pipe 

of constant diameter or the uniform flow in a channel) and analyse the term that contains 

𝐵 in Eq. 18. As it was said, the variation of internal energy in liquids can be neglected and 

we will leave it out. In a given section, we have:  

∫ 𝜌𝑔𝐵�⃗� ∙ �̂�𝑑𝑆
𝑆

= ∫ 𝜌𝑔 (𝑧 +
𝑝

𝜌𝑔
+

𝑣2

2𝑔
) 𝑣𝑑𝑆

𝑆

 

 

(28) 

In any flow with parallel streamlines, the sum 𝑧 + 𝑝 (𝜌𝑔)⁄  remains constant. In 

particular, we can evaluate that sum at the gravity centre (𝐺) of the section:  

∫ 𝜌𝑔 (𝑧 +
𝑝

𝜌𝑔
+

𝑣2

2𝑔
) 𝑣𝑑𝑆

𝑆

= ∫ 𝜌𝑔 (𝑧 +
𝑝

𝜌𝑔
) 𝑣𝑑𝑆

𝑆

+ ∫ 𝜌𝑔
𝑣2

2𝑔
𝑣𝑑𝑆

𝑆

 

 

(29) 

 

∫ 𝜌𝑔 (𝑧 +
𝑝

𝜌𝑔
+

𝑣2

2𝑔
) 𝑣𝑑𝑆

𝑆

= 𝜌𝑔 (𝑧 +
𝑝

𝜌𝑔
) ∫ 𝑣𝑑𝑆

𝑆

+ 𝜌𝑔 ∫
𝑣2

2𝑔
𝑣𝑑𝑆

𝑆

 

 

(30) 

 

∫ 𝜌𝑔𝐵𝑣𝑑𝑆
𝑆

= 𝜌𝑔 (𝑧𝐺 +
𝑝𝐺

𝜌𝑔
) ∫ 𝑣𝑑𝑆

𝑆

+ 𝜌𝑔 ∫
𝑣2

2𝑔
𝑣𝑑𝑆

𝑆

 

 

(31) 

As the velocity varies from zero to a maximum value, we want to express the 

Bernoulli in terms of the mean velocity �̅� = 𝑄 𝐴⁄ , where 𝐴  is the area of the surface 𝑆. 

Because 𝐵 depends on the square of 𝑣, the effect of using �̅� in the Bernoulli is taking into 
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account by means of a coefficient 𝛼 affecting the term with�̅�2. Calling 𝐵∗ the Bernoulli 

based upon �̅� :  

𝐵∗ = 𝑧 +
𝑝

𝜌𝑔
+ 𝛼

�̅�2

2𝑔
 (32) 

We want to have:  

∫ 𝜌𝑔𝐵𝑣𝑑𝑆
𝑆

= ∫ 𝜌𝑔𝐵∗�̅�𝑑𝑆
𝑆

 

 

(33) 

Replacing Eq. 31 in the left side of Eq. 33 and Eq. 32 in the integral of the right side:  

𝜌𝑔 (𝑧𝐺 +
𝑝𝐺

𝜌𝑔
) ∫ 𝑣𝑑𝑆

𝑆

+ 𝜌𝑔 ∫
𝑣2

2𝑔
𝑣𝑑𝑆

𝑆

= ∫ 𝜌𝑔 (𝑧 +
𝑝

𝜌𝑔
+ 𝛼

�̅�2

2𝑔
) �̅�𝑑𝑆

𝑆

 

 

(34) 

 

𝜌𝑔 (𝑧𝐺 +
𝑝𝐺

𝜌𝑔
) ∫ 𝑣𝑑𝑆

𝑆

+ 𝜌𝑔 ∫
𝑣2

2𝑔
𝑣𝑑𝑆

𝑆

= 𝜌𝑔 (𝑧𝐺 +
𝑝𝐺

𝜌𝑔
) ∫ �̅�𝑑𝑆

𝑆

+ 𝜌𝑔 ∫ 𝛼
�̅�2

2𝑔
�̅�𝑑𝑆

𝑆

 

 

(35) 

But  

∫ 𝑣𝑑𝑆
𝑆

= ∫ �̅�𝑑𝑆
𝑆

= 𝑄 

 

(36) 

Using Eq. 36, Eq. 35 is reduced to:  

∫
𝑣2

2𝑔
𝑣𝑑𝑆

𝑆

= ∫ 𝛼
�̅�2

2𝑔
�̅�𝑑𝑆

𝑆

 

 

(37) 

From where we can obtain an expression for the coefficient 𝛼 that takes into account 

that the velocity is not constant in any section of the stream tube:  

𝛼 =
∫ 𝑣3𝑑𝑆

𝑆

�̅�3𝐴
 

 

(38) 

The coefficient 𝛼 is called Coriolis coefficient. It is easy to see that in order to compute 

𝛼 from Eq. 38, the velocity distribution has to be known, which is not always possible, and 

many times it is determined from experiments or field measurements. For turbulent flow 

in rectilinear pipes  ~ 1.03 − 1.1 , depending on 𝑅𝑒. As 𝛼 is close to 1, the value  𝛼 = 1 is 

commonly used. For a laminar flow in a pipe, 𝛼 = 2. 
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Rigorously, Eq. 26 should be written as: 

𝜌𝑔𝑄(𝐵2
∗ − 𝐵1

∗) =
𝑑�̂�

𝑑𝑡
−

𝑑𝑊𝐸

𝑑𝑡
−

𝑑𝑊𝜏

𝑑𝑡
 (39) 

with  

𝐵∗ = 𝑧 +
𝑝

𝜌𝑔
+ 𝛼

�̅�2

2𝑔
 (32) 

However, it is customary that the bar ̅  over the velocity and the asterisk ∗ of the 

Bernoulli are not written, and Eq. 32 becomes:  

𝐵 = 𝑧 +
𝑝

𝜌𝑔
+ 𝛼

𝑣2

2𝑔
 (40) 

As most of the applications deal with turbulent flow, 𝛼 = 1 is used, Eq. 32 ends 

written as:  

𝐵 = 𝑧 +
𝑝

𝜌𝑔
+

𝑣2

2𝑔
 (41) 

 A word of caution is necessary here: Eq. 41 is easily confused with Eq. 19, although 

they are different. Eq. 41 can be applied to a real fluid with non-uniform velocity profile, 

whereas Eq. 19 is restricted to uniform velocity profile, something that cannot be attained 

by flows of real fluids with solid boundaries. Following the common usage, we will write 𝐵, 

although we will be working with 𝐵∗. Similarly, most of the time we will not write the 

Coriolis coefficient because the flow will be turbulent. 

If there is a hydraulic machine like a pump or a turbine, 𝑑𝑊𝐸 𝑑𝑡⁄  corresponds to the 

power of the machine, 𝑃. We use to write the power divided by (𝜌𝑔𝑄). For an ideal flow 

without heat exchange:  

(𝐵2 − 𝐵1) = −
1

𝜌𝑔𝑄

𝑑𝑊𝐸

𝑑𝑡
= −

𝑃

𝜌𝑔𝑄
 (42) 

As we already mentioned, for a pump 𝑃 < 0 and for a turbine 𝑃 > 0. Usually the 

notation ∆𝐵 = |𝑃| (𝜌𝑔𝑄)⁄  is used, with the absolute value of the power. The sign (+) for a 

turbine or (–) for a pump should be written explicitly in the equation. 

Let’s consider now the adiabatic flow of a real fluid, without external work. The term 

− 𝑑𝑊𝜏 𝑑𝑡⁄  is the power dissipated by viscous effects. It is customary in hydraulics to work 

with the power divided by (𝜌𝑔𝑄). In this case, Eq. 39 becomes:  
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(𝐵2 − 𝐵1) = −
1

𝜌𝑔𝑄

𝑑𝑊𝜏

𝑑𝑡
 (43) 

The dissipated energy per unit weight of the fluid is denoted by, which is defined 

as:  

 ≡
1

𝜌𝑔𝑄

𝑑𝑊𝜏

𝑑𝑡
 (44) 

Thus, Eq. 43 is written as:  

𝐵2 = 𝐵1 −  (45) 

The energy loss is usually divided in two terms: one associated to friction and other 

to singularities in the flow line. Let’s restrict our attention to the friction loss. The energy 

loss per unit length is denoted by 𝐽, defined as:  

𝐽 = −
𝑑𝐵

𝑑𝑥
 (46) 

 Thus, the friction loss in a pipe of length 𝐿 is given by  = 𝐽𝐿.Computation of 𝐽 is 

generally performed using the Darcy-Weisbach equation, which requires to know the 

friction factor 𝑓. For a cylindrical pipe of diameter 𝐷:  

𝐽 = 𝑓
1

𝐷

𝑣2

2𝑔
 (47) 

 In general, 𝑓 depends of the flow regime, given by the Reynolds number, 𝑅𝑒, and the 

relative roughness of the pipe, 𝜀 𝐷⁄ , where 𝜀 is the size of the roughness. It can be computed 

analytically for laminar flows, resulting 𝑓 = 64 𝑅𝑒⁄ . For turbulent flows, 𝑓 can be 

determined semi-analytically, as we will see later. When Eq. 47 is applied to non-circular 

conduits, the diameter 𝐷 should be replaced by the four times the hydraulic radius, defined 

as 𝑅𝐻 = 𝐴 ⁄  , where 𝐴 is the flow area and  is the wetted perimeter (i.e., 𝐷 = 4𝑅𝐻) 

Momentum theorem: It corresponds to the application of Newton’s second law to a fluid 

system:  

𝑑

𝑑𝑡
(𝑚�⃗�) = �⃗� (48) 

 For simplicity, let’s apply Eq. 48 to the same control volume used in the derivation 

of the energy general equation (Fig. 9). It can be shown that the term that indicates the 

variation of momentum in Eq. 48, when apply to a fluid, becomes:  
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𝑑

𝑑𝑡
(𝑚�⃗�) =

𝜕

𝜕𝑡
∫ 𝜌�⃗�

𝑉𝐶

𝑑𝑉 + ∫ 𝜌�⃗�
𝑆𝐶

�⃗� ∙ �̂�𝑑𝑆 (49) 

 The integral over the surfaces of the control volume is split in three terms:  

∫ 𝜌�⃗�
𝑆𝐶

�⃗� ∙ �̂�𝑑𝑆 = ∫ 𝜌�⃗�
𝑆1

�⃗� ∙ �̂�𝑑𝑆 + ∫ 𝜌�⃗�
𝑆𝑚

�⃗� ∙ �̂�𝑑𝑆 + ∫ 𝜌�⃗�
𝑆2

�⃗� ∙ �̂�𝑑𝑆 (50) 

Considering that there is no flow through the mantle and that �⃗�1 ∙ �̂�1 < 0,  �⃗�2 ∙ �̂�2 >

0, constant properties at each transverse section of the stream tube, and 𝑣1𝑆1 = 𝑣2𝑆2 = 𝑄, 

Eq. 48 can be written as:  

𝜕

𝜕𝑡
∫ 𝜌�⃗�

𝑉𝐶

𝑑𝑉 + 𝜌𝑄(�⃗�2 − �⃗�1) = �⃗� (51) 

For a steady flow, Eq. 51 is simplified to:  

𝜌𝑄(�⃗�2 − �⃗�1) = �⃗� (52) 

As it happened with the energy general equation, Eq. 52 is valid only for uniform 

velocity profiles. In order to take into account the non-uniformity of the velocity profile 

imposed by boundaries in flow of real fluids, the cross section mean velocity is used in 

conjunction with a coefficient 𝛽 and Eq. 53 becomes:  

𝜌𝑄(𝛽2�⃗�2 − 𝛽1�⃗�1) = �⃗� (52) 

The coefficient 𝛽 is named Boussinesq coefficient and it is given by:  

𝛽 =
∫ 𝑣2𝑑𝑆

𝑆

�̅�2𝐴
 

 

(53) 

 For most turbulent flows 𝛽 ~ 1.01 − 1.04, and the value 𝛽 = 1 is considered. For a 

laminar flow in a pipe, 𝛽 = 4 3⁄ . 

The uniform, steady, two-dimensional flow with free surface of a real fluid: As an 

application of the three fundamental principles of the physics applied to hydraulics, we will 

analyse the flow in an infinitely wide inclined channel in which the permanent and uniform 

flow with a free surface exists. The problem is sketched in Fig. 10. The bottom of the 

channel coincides with the 𝑥 axis which is inclined an angle 𝜃 with respect to the horizontal 

line. The flow depth is 𝐻 and the cross sectional mean velocity is 𝑈. There is not heat 

transfer between the fluid system and the environment and the flow is turbulent. 
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 The first thing that needs to be done when working with the equations derived with 

the integral approach, is to choose the control volume. In this case 𝑉𝐶   corresponds to the 

volume defined by the segmented line. The application of the continuity equation, energy 

equation and momentum theorem must be done in this volume. 

 

 

 

 

 

 

 

Continuity equation: As the flow is 2-D, we work with both the discharge and the area of 

the flow section per unit width, i.e., 𝑞 = 𝑄 𝑏⁄  and 𝑎 = 𝐴 𝑏⁄ . Calling (1) to the entrance section 

and (2) to the exit section, and considering steady flow, the application of Eq. 1 to the 

control volume reduces to 𝑞1 = 𝑞2. Uniformity of the flow means that the flow depth in both 

sections is the same, from where 𝑎1 = 𝑎2 = 𝐻. Thus, from Eq. 2: 𝑣1 = 𝑣2 = 𝑈. 

Energy equation: The control volume corresponds to a streamtube, as shown in Fig. 11. As 

the flow is turbulent we assume 𝛼 = 1. Application of Eq. 45:  

𝐵2 = 𝐵1 −  (45) 

 

As the flow is uniform, the streamlines are parallels, and the sum 𝑧 + 𝑝 (𝜌𝑔)⁄  

remains constant in any cross section. That means that the sum can be evaluated at any 𝑧 

𝐻 
𝑈 

𝑥 𝜃 

�⃗� 𝑝𝑎𝑡𝑚 

Fig. 10.- Steady, uniform, 2-D free surface 

flow 

𝑉𝐶 

𝑥 𝜃 

(2) 
(1) 

∆𝑥 

𝑧1 
𝑧2 

Fig. 11.- Application of the energy equation to the control volume 
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of the section. For simplicity, we choose to evaluate it at the free surface, because at that 

location the pressure is known (𝑝𝑎𝑡𝑚). Thus, Eq. 45 becomes:  

𝑧2 +
𝑝𝑎𝑡𝑚

𝜌𝑔
+

𝑈2

2𝑔
= 𝑧1 +

𝑝𝑎𝑡𝑚

𝜌𝑔
+

𝑈2

2𝑔
−  (54) 

 Thus:  

 = 𝑧1 − 𝑧2 (55) 

From the geometry:  

sin 𝜃 = −
𝑧1 − 𝑧2

∆𝑥
 (55) 

Using Eq. 46 and  = 𝐽∆𝑥, we obtain:  

𝐽 = sin 𝜃 (56) 

 The result above obtained indicates that for steady, uniform open-channel flows the 

gradient of the energy line is equal to the slope of the channel. Or, equivalently, the energy 

line is parallel to the bottom of the channel (and parallel to the free surface). 

 We can relate the flow velocity with the slope of the channel using Eq. 47. It is easy 

to show that for this flow, 𝑅𝐻 = 𝐻. Thus, we have:  

sin 𝜃 = 𝑓
1

4𝐻

𝑈2

2𝑔
 (57) 

 The problem is not solved yet because we have not said anything about the friction 

factor. We will get some relationships for it later. 

Momentum theorem: In order to apply Newton’s second law to the control volume of Fig. 

10, we have to recognize that Eq. 52 is a vectorial equation, and it should be applied to each 

component of the coordinate system. As we already have defined the control volume, the 

first step in our analysis is to identify the forces and momentum fluxes acting in 𝑉𝐶. To do 

this, we will use Fig. 12. 
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The 𝑦-component of the momentum equation is not relevant in this analysis. It only 

says that the component of the weight in the 𝑦 direction is equilibrated with the reaction 

normal to the bottom of the channel. Let’s analyse the 𝑥-component of the momentum 

equation. Eq. 52 gives:  

𝜌𝑄(𝛽2𝑣2𝑥 − 𝛽1𝑣1𝑥) = 𝐹𝑥 (58) 

𝐹𝑥 is 𝑥-component the resultant of the forces acting in the control volume. We can 

identify the following forces: 𝐹𝑝 , forces due to the fluid pressure; 𝑊, weight of the fluid 

contained in the control volume; and 𝐹𝜏𝑜, force due to the friction between the fluid and the 

bottom. Thus:  

𝐹𝑥 = 𝐹𝑝1 − 𝐹𝑝2 + 𝑊 sin 𝜃 − 𝐹𝜏0 (59) 

As 𝑣1𝑥 = 𝑣2𝑥 = 𝑈, there is not variation of momentum, and Eq. 58 becomes simply:  

𝐹𝑝1 − 𝐹𝑝2 + 𝑊 sin 𝜃 − 𝐹𝜏0 = 0 (60) 

We can evaluate the force due to the pressure as 𝐹𝑝 = 𝑝𝐺𝐴, where 𝑝𝐺 is the fluid 

pressure at the centre of gravity of the surface with area 𝐴. As the flow is uniform, 𝐴 and 

𝑝𝐺 are the same in sections (1) and (2), and the pressure does not contribute in the 

equilibrium of forces given by Eq. 60. This indicates that for the steady uniform flow in a 

channel, there is an equilibrium between the force that generates the motion (the 

component of the weight in the flow direction) and the force that opposes to the motion (due 

the friction at the wall):  

𝑥 𝜃 

(2) 
(1) 

∆𝑥 

𝑈 

𝑈 

Fig. 12.- Application of the momentum theorem to the control volume 

�⃗� 

𝑦 𝐹𝑝2 

𝐹𝑝1 

𝑊 
𝐹𝜏𝑜 
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𝑊 sin 𝜃 = 𝐹𝜏0 (61) 

The weight (per unit width) is given by: 

𝑊 = 𝜌𝑔𝐻∆𝑥  (62) 

The force (per unit width) due to friction is:  

𝐹𝜏0 = 𝜏0∆𝑥  (63) 

In the above equation, 𝜏0 is the shear stress acting on the bottom of the channel. Eqs. 

61, 62 and 63 give:  

𝜏0 = 𝜌𝑔𝐻 sin 𝜃   (64) 

Using Eq. 56, we can write:  

𝜏0 = 𝜌𝑔𝐻𝐽   (65) 

 Although Eq. 65 was obtained for steady and uniform flow, the same result is 

assumed to hold for steady and gradually varied flow. 

Combining Eqs. 57 and 64:  

𝜏0 =
1

8
𝜌𝑓𝑈2 (66) 

A “shear velocity”, 𝑢∗, is defined as:  

𝑢∗ = √
𝜏0

𝜌
 (67) 

From where:  

𝑢∗

𝑈
= √

𝑓

8
 (68) 
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 It is important to have in mind that 𝑢∗ is not a flow velocity. It is only a way to write 

the friction stress acting on the wall, 𝜏0. The term √𝜏0 𝜌⁄  appears many times in the 

analysis of fluid flows. As it has dimensions of velocity, it is called “friction velocity”. 

Shear stress distribution in a steady, uniform, two-dimensional flow with free 

surface of a real fluid: We obtained the shear stress acting on the bottom of the channel 

(Eq. 64). As there is not shear applied on the free surface, there the shear stress is zero. 

The question is: how does the shear stress changes from zero at the free surface to 𝜏0 =

𝜌𝑔𝐻 sin 𝜃 on the bottom?. To answer this question, we can applied the momentum theorem 

to the control volume of Fig.13. 

 

 

 The forces acting in 𝐶𝑉  are depicted in Fig. 14. Essentially, they are the same than 

those shown in Fig. 12, but for a control volume that does not reach the bottom of the 

channel. 

𝐻 
𝑈 

𝑥 𝜃 

�⃗� 𝑝𝑎𝑡𝑚 

Fig. 13.- Control volume chosen to determine the variation of the shear 

stress 

𝑉𝐶 

𝑦 

𝑥 𝜃 

(2) 
(1) 

∆𝑥 

𝑈 

𝑈 

Fig. 14.- Forces acting in the control volume 

�⃗� 

𝑦 

𝐹𝑝𝑦2 

𝐹𝑝𝑦1 

𝑊𝑦 
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𝐹𝑝𝑦 is the force due to the fluid pressure acting on the surfaces comprised between 𝐻 

and 𝑦, 𝑊𝑦 is the weight of the fluid contained in the control volume, and 𝐹𝜏𝑦 the force due 

to friction at a distance 𝑦 from the bottom. With the same arguments that we obtained Eq. 

61, we get:  

𝑊𝑦 sin 𝜃 = 𝐹𝜏𝑦 (69) 

 

The weight of fluid and force due to shear stress are given by:  

𝑊𝑦 sin 𝜃 = 𝜌𝑔(𝐻 − 𝑦)∆𝑥  (70) 

𝐹𝜏𝑦 = 𝜏𝑦∆𝑥  (71) 

From where we obtain:  

𝜏𝑦 = 𝜌𝑔(𝐻 − 𝑦) sin 𝜃  (72) 

Eq. 72 indicates that the shear stress varies linearly with depth, from zero on the 

free surface (𝑦 = 𝐻) to 𝜏𝑦 = 𝜌𝑔𝐻 sin 𝜃 on the bottom (𝑦 = 0), as sketched in Fig. 15. Dividing 

Eq. 72 by Eq.64:  

𝜏𝑦

𝜏0
= (1 −

𝑦

𝐻
) (73) 

 

𝐻 

𝜏0 

𝑦 

𝜏𝑦 

Fig. 15.- Shear stress distribution 
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BASIC EQUATIONS OF FLUID MECHANICS OBTAINED FROM THE 

DIFFERENTIAL APPROACH 

 

As we have seen, the equations obtained using the integral approach do not provide 

information about the flow characteristics in a point of the flow domain, but it considers 

mean velocities, and total forces acting on the control volume or its surfaces. In order to 

take into account the variation of the velocity in a given section, the coefficients 𝛼 and 𝛽 

appears, but from their definition, the velocity distribution is needed to compute them 

analytically. Now we will derive the equations of continuity and momentum considering 

an infinitely small control volume, which we will take to the limit that it becomes a point. 

 

CONTINUITY EQUATION 

Let’s analyse the flow of mass through an element of volume 𝑑𝑉 = 𝑑𝑥𝑑𝑦𝑑𝑧 immersed 

in the flow, as shown in Fig. 16. The velocity field is �⃗� = (𝑢, 𝑣, 𝑤). Through this imaginary 

volume, the flow (represented by the streamlines in the figure) passes transporting mass 

of fluid. Conservation of mass indicates that the variation of mass per unit time inside 𝑑𝑉 

is equal to the mass rate that enters the volume, less that the mass rate that exits from it. 

This statement can be written as: 

𝜕𝑚

𝜕𝑡
= 𝐺𝑖 − 𝐺𝑜 (74) 

where 𝑚 is the mass of fluid contained in 𝑑𝑉, given by 

𝑑𝑦 

𝑑𝑥 

𝑑𝑧 

Fig. 16.- Imaginary element of volume in the flow domain 

𝑥 

𝑧 

𝑦 
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𝑑𝑚 = 𝜌𝑑𝑉 (75) 

 𝐺𝑖 is the mass rate that enters 𝑑𝑉, and 𝐺𝑜 is the mass rate that exits from the volume. The 

fluid can enter (and exit) through any of the six surfaces that define the volume. For the 

flow in the 𝑥 direction, we have a surface located at 𝑥 with normal (−𝑖)̂, and other located 

at 𝑥 + 𝑑𝑥, with normal (+𝑖̂).The same happens for the other coordinates. Thus, we can 

decompose the mass that enters to 𝑑𝑉 in three terms, and write:  

𝐺𝑖 = 𝐺𝑥|𝑥 + 𝐺𝑦|
𝑦

+ 𝐺𝑧|𝑧 (76) 

where the symbol |𝑥 stands for “evaluated at 𝑥”, and so on for the other directions. 

Similarly, the mass that exits the volume can be written as:  

𝐺𝑜 = 𝐺𝑥|𝑥+𝑑𝑥 + 𝐺𝑦|
𝑦+𝑑𝑦

+ 𝐺𝑧|𝑧+𝑑𝑧 (77) 

Replacing in Eq. 74: 

𝜕

𝜕𝑡
(𝜌𝑑𝑉) = 𝐺𝑥|𝑥 + 𝐺𝑦|

𝑦
+ 𝐺𝑧|𝑧 − (𝐺𝑥|𝑥+𝑑𝑥 + 𝐺𝑦|

𝑦+𝑑𝑦
+ 𝐺𝑧|𝑧+𝑑𝑧) (78) 

The terms evaluated at 𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦  and in 𝑧 + 𝑑𝑧 can be related to those evaluated 

at 𝑥, 𝑦  and in 𝑧 by means of a Taylor’s expansion. For example, the term 𝐺𝑥|𝑥+𝑑𝑥 is 

expanded as:  

𝐺𝑥|𝑥+𝑑𝑥 = 𝐺𝑥|𝑥 +
𝜕𝐺𝑥

𝜕𝑥
|

𝑥
𝑑𝑥 +

1

2

𝜕2𝐺𝑥

𝜕𝑥2
|

𝑥

(𝑑𝑥)2 + ⋯ (79) 

As 𝑑𝑥 is infinitely small, the term (𝑑𝑥)2 and higher powers of  𝑑𝑥 can be neglected. 

Thus, the net flow of mass along the 𝑥 direction is:  

𝐺𝑥|𝑥 − 𝐺𝑥|𝑥+𝑑𝑥 = −
𝜕𝐺𝑥

𝜕𝑥
|

𝑥
𝑑𝑥 (80) 

The mass rate is defined as the discharge times the density. The discharge in the 𝑥 

direction is 𝑢𝑑𝐴𝑥, where 𝑑𝐴𝑥 is the element of area of the surface with normal 𝑖̂, 𝑑𝐴𝑥 = 𝑑𝑦𝑑𝑧. 

Thus, Eq. 80 becomes:  

−
𝜕𝐺𝑥

𝜕𝑥
|

𝑥
𝑑𝑥 = −

𝜕

𝜕𝑥
(𝜌𝑢)|

𝑥
𝑑𝑥𝑑𝑦𝑑𝑧 (81) 
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In the same way:  

−
𝜕𝐺𝑦

𝜕𝑦
|

𝑦

𝑑𝑦 = −
𝜕

𝜕𝑦
(𝜌𝑣)|

𝑦

𝑑𝑥𝑑𝑦𝑑𝑧 −
𝜕𝐺𝑧

𝜕𝑧
|

𝑧
𝑑𝑧 = −

𝜕

𝜕𝑧
(𝜌𝑤)|

𝑧
𝑑𝑥𝑑𝑦𝑑𝑧 (82) 

and  Eq. 78 becomes:  

𝜕𝜌

𝜕𝑡
𝑑𝑥𝑑𝑦𝑑𝑧 = − (

𝜕

𝜕𝑥
(𝜌𝑢) +

𝜕

𝜕𝑦
(𝜌𝑣) +

𝜕

𝜕𝑧
(𝜌𝑤)) 𝑑𝑥𝑑𝑦𝑑𝑧 (83) 

 

Thus, the continuity equation in the differential approach is written as:  

𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑥
(𝜌𝑢) +

𝜕

𝜕𝑦
(𝜌𝑣) +

𝜕

𝜕𝑧
(𝜌𝑤) = 0 (84) 

 

or, in vectorial form:  

𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌�⃗�) = 0 (85) 

For an incompressible fluid, Eq. 85 is greatly reduced to:  

∇ ∙ �⃗� = 0 (86) 

Or, equivalently:  

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0 (87) 

 

Eq. 87 (or 86) is the equivalent to Eq.1 of the integral approach.  

 

MOMENTUM EQUATION 

 

 Before applying the Newton’s second law to the elementary volume of Fig. 16, it is 

important to remember that two kinds of forces can be identified in the element of fluid: 

forces that depend on the amount of matter and that apply to the centre of gravity of the 

element of fluid (for example, weight). They are called “body forces”, and notated as �⃗�𝐵. The 

second kind of forces act on the surfaces that define the volume of fluid (like pressure and 
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shear stresses), and “surface forces”, and written as �⃗�𝑆. Thus, Newton’s second law can be 

written as:  

𝑑

𝑑𝑡
(𝑚�⃗�) = �⃗�𝑆 + �⃗�𝐵 (88) 

As the total mass of the system remains constant, Eq. 88 evolves into:  

𝜌𝑑𝑉
𝑑�⃗�

𝑑𝑡
= �⃗�𝑆 + �⃗�𝐵 (89) 

 

The total or material derivative of the velocity can be expressed as:  

𝑑�⃗�

𝑑𝑡
=

𝜕�⃗�

𝜕𝑡
+ (�⃗� ∙ ∇)�⃗� =

𝜕�⃗�

𝜕𝑡
+ 𝑢

𝜕�⃗�

𝜕𝑥
+ 𝑣

𝜕�⃗�

𝜕𝑦
+ 𝑤

𝜕�⃗�

𝜕𝑧
 (91) 

The body force depends of the amount of matter, i.e., it is proportional to the mass 

of fluid in the 𝑑𝑉. As the mass is given by 𝜌𝑑𝑉, we can express the body force in terms of a 

body per unit mass, 𝑓𝐵:  

�⃗�𝐵 = 𝜌𝑓𝐵𝑑𝑉 (92) 

The most common body force is that due to gravity. In this case, 𝑓𝐵 = �⃗�, and Eq. 92 

becomes:  

�⃗�𝐵 = 𝜌�⃗�𝑑𝑉 (93) 

 The analysis of surface forces requires to evaluate the forces acting on the six 

surfaces that define the element of fluid volume, as shown in Fig. 17. There are three 

surface forces acting on each surface. The surface stresses are represented as 𝜏𝑖𝑗, where 𝑖 

indicates the direction of the vector normal to the surface and 𝑗 the direction of the force 

(where 𝑖 and 𝑗 can take the values 𝑖̂, 𝑗̂ or �̂� ). Thus, the net force in the direction 𝑗 is the 

result of the stresses of the surfaces located at 𝑥, with normal (−𝑖̂); at 𝑥 + 𝑑𝑥, with normal 

(+𝑖̂); at 𝑦, with normal (−𝑗̂); at 𝑦 + 𝑑𝑦, with normal (+𝑗̂); and at 𝑧, with normal (−�̂�); at 

𝑧 + 𝑑𝑧, with normal (+�̂�). Obviously, the direction 𝑗 can be 𝑖̂, 𝑗̂ or �̂�. 

The net surface force has components in the three directions:  

�⃗�𝑆 = 𝐹𝑆𝑥𝑖̂ + 𝐹𝑆𝑦𝑗̂ + 𝐹𝑆𝑧�̂� (94) 
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As it was said, six surfaces contribute to each component of Eq. 94. For the 

component in the 𝑥 direction we have:  

𝐹𝑆𝑥 = 𝐹𝑆𝑥𝑥|𝑥 + 𝐹𝑆𝑥𝑥|𝑥+𝑑𝑥 + 𝐹𝑆𝑦𝑥|
𝑦

+ 𝐹𝑆𝑦𝑥|
𝑦+𝑑𝑦

+ 𝐹𝑆𝑧𝑥|𝑧 + 𝐹𝑆𝑧𝑥|𝑧+𝑑𝑧 (95) 

In term of the stresses, any surface force can be written as 𝐹𝑆𝑖𝑗 = 𝜏𝑖𝑗𝑑𝑆𝑗, where 𝑑𝑆𝑗 is 

the surface on which the stress is acting, with a vector normal to the surface in the 𝑗 

direction. Thus, Eq. 95 is given by:  

 

 

𝐹𝑆𝑥 = 𝜏𝑥𝑥|𝑥(−𝑖)̂𝑑𝑆𝑥 + 𝜏𝑥𝑥|𝑥+𝑑𝑥(𝑖̂)𝑑𝑆𝑥 + 𝜏𝑦𝑥|
𝑦

(−𝑗̂)𝑑𝑆𝑦 + 𝜏𝑦𝑥|
𝑦+𝑑𝑦

(𝑗̂)𝑑𝑦

+ 𝜏𝑧𝑥|𝑧(−�̂�)𝑑𝑆𝑧 + 𝜏𝑧𝑥|𝑧+𝑑𝑧(�̂�)𝑑𝑆𝑧 
(96) 

The surfaces on which the stresses are acting correspond to:  

𝑑𝑆𝑥 = 𝑑𝑦𝑑𝑧 𝑑𝑆𝑦 = 𝑑𝑥𝑑𝑧 𝑑𝑆𝑧 = 𝑑𝑥𝑑𝑦 (97) 

Expanding in Taylor’s series and neglecting the terms of second order and higher, 

we have:  

𝜏𝑥𝑥 

𝜏𝑧𝑧 

𝑑𝑦 

𝑑𝑥 

𝑑𝑧 

Fig. 17.- Surface forces acting on the three visible surfaces of 

the  element of fluid volume  

𝑥 

𝑧 

𝑦 

𝜏𝑧𝑦 

𝜏𝑧𝑥 

𝜏𝑥𝑦 

𝜏𝑥𝑧 

𝜏𝑦𝑥 

𝜏𝑦𝑧 

𝜏𝑦𝑦 
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𝜏𝑥𝑥|𝑥+𝑑𝑥 = 𝜏𝑥𝑥|𝑥 +
𝜕𝜏𝑥𝑥

𝜕𝑥
|

𝑥
𝑑𝑥 + ⋯

𝜏𝑦𝑥|
𝑦+𝑑𝑦

= 𝜏𝑦𝑥|
𝑦

+
𝜕𝜏𝑦𝑥

𝜕𝑦
|

𝑦

𝑑𝑦 + ⋯

𝜏𝑧𝑥|𝑧+𝑑𝑧 = 𝜏𝑧𝑥|𝑧 +
𝜕𝜏𝑧𝑥

𝜕𝑧
|

𝑧
𝑑𝑧 + ⋯

 

 

 

(98) 

Replacing Eqs. 97 and 98 in Eq. 96, we get:  

𝐹𝑆𝑥 = (
𝜕𝜏𝑥𝑥

𝜕𝑥
+

𝜕𝜏𝑦𝑥

𝜕𝑦
+

𝜕𝜏𝑧𝑥

𝜕𝑧
) 𝑑𝑥𝑑𝑦𝑑𝑧 (99) 

Following the same procedure for the components along 𝑦 and 𝑧 of �⃗�𝑆, we obtain:  

𝐹𝑆𝑦 = (
𝜕𝜏𝑥𝑦

𝜕𝑥
+

𝜕𝜏𝑦𝑦

𝜕𝑦
+

𝜕𝜏𝑧𝑦

𝜕𝑧
) 𝑑𝑥𝑑𝑦𝑑𝑧 

 

(100) 

 

𝐹𝑆𝑧 = (
𝜕𝜏𝑥𝑧

𝜕𝑥
+

𝜕𝜏𝑦𝑧

𝜕𝑦
+

𝜕𝜏𝑧𝑧

𝜕𝑧
) 𝑑𝑥𝑑𝑦𝑑𝑧 (101) 

Replacing Eqs. 91, 93, 99, 100 and 101 in Eq. 94, Newton’s second law is written as:  

𝜌 (
𝜕�⃗�

𝜕𝑡
+ 𝑢

𝜕�⃗�

𝜕𝑥
+ 𝑣

𝜕�⃗�

𝜕𝑦
+ 𝑤

𝜕�⃗�

𝜕𝑧
) = 𝜌�⃗� + 

(
𝜕𝜏𝑥𝑥

𝜕𝑥
+

𝜕𝜏𝑦𝑥

𝜕𝑦
+

𝜕𝜏𝑧𝑥

𝜕𝑧
) 𝑖̂ + (

𝜕𝜏𝑥𝑦

𝜕𝑥
+

𝜕𝜏𝑦𝑦

𝜕𝑦
+

𝜕𝜏𝑧𝑦

𝜕𝑧
) 𝑗̂ + (

𝜕𝜏𝑥𝑧

𝜕𝑥
+

𝜕𝜏𝑦𝑧

𝜕𝑦
+

𝜕𝜏𝑧𝑧

𝜕𝑧
) �̂� 

(102) 

We can recognize that 𝜏𝑥𝑥, 𝜏𝑦𝑥, 𝜏𝑧𝑥, 𝜏𝑥𝑦, … are the elements of matrix array. Actually, 

they are a tensor, and 𝜏𝑖𝑗 corresponds to the stress tensor:  

 

𝜏𝑖𝑗 = (

𝜏𝑥𝑥 𝜏𝑦𝑥 𝜏𝑧𝑥

𝜏𝑥𝑦 𝜏𝑦𝑦 𝜏𝑧𝑦

𝜏𝑥𝑧 𝜏𝑦𝑧 𝜏𝑧𝑧

) (103) 

Eq. 102 is greatly simplified when it is written in vectorial form:  

𝜌 (
𝜕�⃗�

𝜕𝑡
+ (�⃗� ∙ ∇)�⃗�) = 𝜌�⃗� + ∇ ∙ 𝜏𝑖𝑗 (104) 

 As Eq. 104 is vectorial, we can write three equations, one for each component.  
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Component 𝑥:  

𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
) = 𝜌𝑔𝑥 +

𝜕𝜏𝑥𝑥

𝜕𝑥
+

𝜕𝜏𝑦𝑥

𝜕𝑦
+

𝜕𝜏𝑧𝑥

𝜕𝑧
 

 

(105) 

Component 𝑦:  

𝜌 (
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
) = 𝜌𝑔𝑦 +

𝜕𝜏𝑥𝑦

𝜕𝑥
+

𝜕𝜏𝑦𝑦

𝜕𝑦
+

𝜕𝜏𝑧𝑦

𝜕𝑧
 

 

(106) 

Component 𝑧:  

𝜌 (
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
) = 𝜌𝑔𝑧 +

𝜕𝜏𝑥𝑧

𝜕𝑥
+

𝜕𝜏𝑦𝑧

𝜕𝑦
+

𝜕𝜏𝑧𝑧

𝜕𝑧
 

 

(107) 

 In the above equations, �⃗� = (𝑔𝑥, 𝑔𝑦, 𝑔𝑧) was used. 

Eq. 104 (or Eqs. 105 to 107) are the Cauchy’s equations. It has to be noted that up to 

now, we have not imposed explicitly at what kind of matter is applied (the only restriction 

is that it has to be continuous, in a gravitational field). It can be applied as much as solids 

as to fluids. We define the kind of matter through the so-called “constitutive relationships”. 

They are relationships between the stresses 𝜏𝑖𝑗 and the deformation or deformation rate of 

the matter. We will restrict the analysis to Newtonian fluids (for example fluids like water, 

air, oil, etc.). We will not perform the derivation of the constitutive relationships for 

Newtonian fluids but give the final result, obtained by Stokes in 1845. Basically, the 

assumptions made by Stokes to derive the equation of motion of Newtonian fluids are the 

following: 

1. The fluid is a continuum 

2. If there is not motion, the equations of hydrostatic should be recovered 

3. There is, at the most, a linear relationship between the stresses and the angular 

deformation rate of an element of fluid 

4. The fluid is isotropic, i.e., the constitutive relationship is independent of the 

direction or coordinate system. 

The second assumption indicates that if there is no motion, the angular deformation 

rates should be zero and the normal stresses acting on the element of fluid should reduce 

to the pressure. This means that 

𝜏𝑖𝑗 = −𝑝𝛿𝑖𝑗 if �⃗� = 0 (108) 

𝛿𝑖𝑗 is the Kronecker’s delta, defined as:  
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𝛿𝑖𝑗 = {

1 if 𝑖 = 𝑗

0 if 𝑖 ≠ 𝑗
 (109) 

The sign (−) in Eq. 108 results from the fact that the pressure points towards the 

element of fluid. The final result from Stokes analysis is:  

𝜏𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 𝜇 (
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) + 𝛿𝑖𝑗∇ ∙ �⃗� (110) 

(As before, 𝑖 and 𝑗 indicate the component along 𝑥, 𝑦 or 𝑧) 

 𝜇 is the dynamic viscosity and  is the second coefficient of viscosity. 

Stokes defined the mechanical pressure, �̅� , as the negative average of the normal 

stresses:  

�̅� = −
𝜏𝑥𝑥 + 𝜏𝑦𝑦 + 𝜏𝑧𝑧

3
 (111) 

From Eq. 110, we get 

𝜏𝑥𝑥 = −𝑝 + 2𝜇
𝜕𝑢

𝜕𝑥
+ ∇ ∙ �⃗�

𝜏𝑦𝑦 = −𝑝 + 2𝜇
𝜕𝑣

𝜕𝑦
+ ∇ ∙ �⃗�

𝜏𝑧𝑧 = −𝑝 + 2𝜇
𝜕𝑤

𝜕𝑧
+ ∇ ∙ �⃗�

 (112) 

Replacing the last equations in Eq. 111:  

�̅� = 𝑝 − (
2

3
𝜇 + ) ∇ ∙ �⃗� (113) 

Note that Eq. 113 gives an interesting result: the mechanical pressure, �̅�, is not equal 

to the thermodynamic pressure, 𝑝. An interesting issue is raised with the second coefficient 

of viscosity. In his work, Stokes assumed that (2𝜇 3⁄ + ) = 0, meaning that  < 0. 

However, some measurements indicate that  > 0. Nevertheless, the value of  should not 

bother us because for incompressible fluids ∇ ∙ �⃗� = 0 (Eq. 86), and in this case �̅� = 𝑝. Also, 

for uncompressible fluids, Eq. 110 is reduced to:  

𝜏𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 𝜇 (
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) (114) 

Thus, the nine components of the tensor 𝜏𝑖𝑗 (Eq. 103) are:  



  

 

 

 

:: 34 :: 
 

𝜏𝑥𝑥 = −𝑝 + 2𝜇
𝜕𝑢

𝜕𝑥
 (115) 

𝜏𝑦𝑦 = −𝑝 + 2𝜇
𝜕𝑣

𝜕𝑦
 (116) 

𝜏𝑧𝑧 = −𝑝 + 2𝜇
𝜕𝑤

𝜕𝑧
 (117) 

𝜏𝑥𝑦 = 𝜏𝑦𝑥 = 𝜇 (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
) (118) 

𝜏𝑥𝑧 = 𝜏𝑧𝑥 = 𝜇 (
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
) (119) 

𝜏𝑦𝑧 = 𝜏𝑧𝑦 = 𝜇 (
𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦
) (120) 

The terms containing 𝜇 are the viscous stresses. Introducing Eqs. 115 to 120 in Eqs.105 to 

107 and using Eq. 87, we obtain the momentum equations for an incompressible Newtonian 

fluid with constant viscosity in the gravitational field:  

Component 𝑥:  

𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
) = −

𝜕𝑝

𝜕𝑥
+ 𝜇 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2
) + 𝜌𝑔𝑥 

 

(121) 

Component 𝑦:  

𝜌 (
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
) = −

𝜕𝑝

𝜕𝑦
+ 𝜇 (

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
+

𝜕2𝑣

𝜕𝑧2
) + 𝜌𝑔𝑦 (122) 

Component 𝑧:  

𝜌 (
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
) = −

𝜕𝑝

𝜕𝑧
+ 𝜇 (

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
+

𝜕2𝑤

𝜕𝑧2
) + 𝜌𝑔𝑧 

 

(123) 

Eqs. 121, 122 and 123 can be written in a more compact form using vectorial 

notation:  

𝜌 (
𝜕�⃗�

𝜕𝑡
+ (�⃗� ∙ ∇)�⃗�) = −∇𝑝 + 𝜇∇2�⃗� + 𝜌�⃗� (124) 
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 Eqs 121 to 123 (or Eq. 124) are called the Navier-Stokes equations. The steps given 

in this note to obtain the equations are based in the work of George Gabriel Stokes “On the 

Theories of Internal Friction of Fluids in Motion”, published in 1845, but in 1822 Claude-

Louis Marie Henri Navier presented the article “Memoire sur les lois du mouvement des 

fluides” (published in 1823), where he got the same sets of Eqs. 121 to 123, but instead of 

the viscosity 𝜇 multiplying the second derivatives of the velocity, he had a coefficient −𝜀 

that arose from the resistance generated by the slip of adjacent layers of fluid molecules 

(Navier, 1823, p. 416). Although the equations obtained by Navier have the right form, he 

was not able to link the origin of the molecular forces with viscosity. 

 The unknowns of a problem of fluid motion are four: the three components of the 

velocity field (𝑢, 𝑣, 𝑤) and the pressure (𝑝). In general, they are functions of the space and 

time: (𝑥, 𝑦, 𝑧, 𝑡).Conceptually, the problem is already solved, because we have a system of 

four partial differential equations, with their corresponding boundary and initial 

conditions. Three equations corresponds to the Navier-Stokes equations (Eqs. 121, 122 and 

123) and the fourth is the continuity equation (Eq. 87). However, the set differential 

equations is highly complex, due to the nonlinear terms (𝑢 𝜕𝑢 𝜕𝑥⁄ , 𝑣 𝜕𝑢 𝜕𝑦⁄ , … ) of the 

momentum equations. Thus, analytical solutions are restricted to a few simple cases. The 

existence of solutions of the Navier-Stokes equations and if they are unique (for the general 

case) has not been proved yet, and it is one of the problem of the millennium. There is a 

prize of US$ 1 million to be awarded to whom can prove that the solution exists and it is 

unique. More information about the prize can be found in the website 

www.claymath.org/millennium-problems/millennium-prize-problems. As an anecdote, we 

can mention that in 2013, Mukhtarbay Otelbaev, from the Institute of Mathematics and 

Mathematical Modelling, Kazakhastan, published the paper (in Russian) “Existence of a 

strong solution of the Navier-Stokes equation” in the Mathematical Journal (Almaty), Vol 

13, No. 4, pp. 5-104, where through 101 pages he would have solved the problem. However, 

about a month later, Otelbaev recognized that he made a mistake in one of the steps of his 

deduction (Moskvitch, 2014). As a recognition of the importance of the Navier-Stokes, one 

student of the Department of Mining Engineering of the University of Chile tattooed the 

equations in his arm, as shown in Fig. 18xx. As he works with slurries that behave as non-

Newtonian fluid, the constitutive relationship differs from Eqs. 115 to 120 and he wrote 

only 𝜏. For non-Newtonian fluids, the expression for 𝜏 can be very complex and the student 

will need his other arm to tattoo them! 

 In the development of the Navier-Stokes equations we have not imposed any 

restriction regarding the flow regime, and they are valid as much for laminar as for 

turbulent flows. However, analytical solutions are obtained only for laminar flows. The 

approach to turbulent flows by means of the Navier-Stokes equations is done numerically, 

and it has open a complete field of research y fluid mechanics, the computational fluid 

dynamics (CFD). 

http://www.claymath.org/millennium-problems/millennium-prize-problems
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The steady, uniform 2-D laminar flow with free surface over an inclined plane. To 

fix ideas, we will solve now the problem that we already analysed using the integral 

approach. A fluid of density 𝜌 and dynamic viscosity 𝜇 flows over a plane inclined an angle 

𝜃 with a flow depth 𝐻 due to the action of gravity. The flow is steady, uniform and laminar. 

The problem is to determine the velocity and pressure distributions.  

We choose the coordinate system indicated in Fig. 18. As the flow is 2-D, we can omit 

the 𝑧 component of the momentum equation and drop 𝑤 and 𝑧 derivatives. Thus the 

equation of continuity and Navier-Stokes are reduced to: 

 Continuity equation:  

𝐻 

𝑥 𝜃 

�⃗� 𝑝𝑎𝑡𝑚 

Fig. 18.- Steady, uniform, 2-D free surface laminar flow over an inclined 

plane 

𝑦 

𝜌, 𝜇 

Fig. 18xx.- Tattoo in the arm of one student of the Mining Engineering 

Department of the University of Chile. 
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𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 (125) 

 As the flow is uniform, the streamlines are parallel to the 𝑥 axis (the free surface is 

parallel to the bottom). Thus, there is not component of the velocity in the 𝑦 direction. 

Therefore:  

𝑣 = 0 0 ≤ 𝑦 ≤ 𝐻 (126) 

and  

𝜕𝑢

𝜕𝑥
= 0 (127) 

Navier-Stokes equation in the 𝑥 direction:  

𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) = −

𝜕𝑝

𝜕𝑥
+ 𝜇 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
) + 𝜌𝑔𝑥 

 

(128) 

Navier-Stokes equation in the 𝑦 direction: 

𝜌 (
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
) = −

𝜕𝑝

𝜕𝑦
+ 𝜇 (

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
) + 𝜌𝑔𝑦 (129) 

Eqs. 128 and 129 are greatly simplified with the conditions of the problem and the 

result obtained from the continuity equation (Eqs. 126 and 127)  

The condition of steady state means that the partial derivatives with respect to 𝑡 are 

zero. This condition and Eqs. 126 and 127 leads to: 

 Navier-Stokes equation in the 𝑥 direction:  

0 = −
𝜕𝑝

𝜕𝑥
+ 𝜌𝑔𝑥 + 𝜇

𝜕2𝑢

𝜕𝑦2
 

 

(130) 

Navier-Stokes equation in the 𝑦 direction: 

0 = −
𝜕𝑝

𝜕𝑦
+ 𝜌𝑔𝑦 (131) 

The last equation indicates that the pressure distribution varies linearly with 𝑦, i.e., 

we have a hydrostatic pressure distribution. Integrating Eq. 131:  
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𝑝 = 𝜌𝑔𝑦𝑦 + 𝐶1(𝑥) (132) 

𝜕(Eq. 132) 𝜕𝑥⁄  and replacing it in Eq. 130:  

0 = −
𝜕𝐶1

𝜕𝑥
+ 𝜌𝑔𝑥 + 𝜇

𝜕2𝑢

𝜕𝑦2
 

 

(133) 

From Eq.127 we know that the third term of Eq. 133 does not depend on 𝑥. It means 

that we can take that term as a constant 𝐾 if we integrate Eq. 133 with respect to 𝑥:  

𝜕𝐶1

𝜕𝑥
= 𝜌𝑔𝑥 + 𝐾 

 

(134) 

𝐶1 = (𝜌𝑔𝑥 + 𝐾)𝑥 + 𝐶 
 

(135) 

𝐶 is a pure constant because we already know that 𝐶1 does not depend on 𝑦. Replacing 𝐶1 

in Eq. 132:  

𝑝 = 𝜌𝑔𝑦𝑦 + (𝜌𝑔𝑥 + 𝐾)𝑥 + 𝐶 (136) 

To determine 𝐶 we have to apply the boundary condition for the pressure. At the free 

surface we have atmospheric pressure. Working with relative pressures, 𝑝𝑎𝑡𝑚 = 0 and the 

boundary condition becomes:  

For any 𝑥 at 𝑦 = 𝐻, 𝑝 = 0 (137) 

Thus: 

𝐶 = −𝜌𝑔𝑦𝐻 − (𝜌𝑔𝑥 + 𝐾)𝑥 (138) 

Replacing now the 𝐶 in Eq. 136:  

𝑝 = 𝜌𝑔𝑦(𝑦 − 𝐻) (139) 

From Fig. 18 it is easy to see that  

𝑔𝑥 = 𝑔 sin 𝜃 , 𝑔𝑦 = −𝑔 cos 𝜃 (140) 
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Finally, the pressure distribution is: 

𝑝 = 𝜌𝑔 cos 𝜃 (𝐻 − 𝑦) (141) 

Known the pressure, we can go back to Eq. 130. From Eq. 141, we have 𝜕𝑝 𝜕𝑥⁄ = 0, 

thus:  

𝜇
𝜕2𝑢

𝜕𝑦2
= −𝜌𝑔𝑥 

 

(142) 

Using the cinematic viscosity,  = 𝜇 𝜌⁄   and Eq. 140:  

 

𝜕2𝑢

𝜕𝑦2
= −

𝑔


sin 𝜃 

 

(143) 

Integrating Eq. 143 twice with respect to 𝑦:  

 

𝑢 = −
𝑔


sin 𝜃

𝑦2

2
+ 𝐴𝑦 + 𝐵 

 

(144) 

The constants 𝐴 and 𝐵 are determined from the boundary conditions. At the bottom 

we have the non-slip condition, i.e., the fluid velocity is the same that the bottom velocity. 

It means:  

For any 𝑥 at 𝑦 = 0, 𝑢 = 0 (145) 

The second boundary condition is on the free surface. As there is not shear stress 

applied on it, the condition is:  

For any 𝑥 at 𝑦 = 𝐻, 𝜏𝑦𝑥 = 0 (146) 

That is to say: 

 𝜏𝑦𝑥|
𝑦=𝐻

= 𝜇
𝜕𝑢

𝜕𝑦
|

𝑦=𝐻
= 0 (147) 

The following values are obtained:  
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𝐴 =
𝑔


sin 𝜃 𝐻

𝐵 = 0

 

 

(148) 

Finally, the velocity distribution is given by:  

𝑢 =
𝑔


sin 𝜃 (𝐻𝑦 −

𝑦2

2
) 

 

(149) 

From Eq. 149 we see that the velocity distribution is parabolic, with a maximum 

value at the free surface equal to 𝑢 = 𝑔 sin 𝜃 𝐻2 (2)⁄ . We can also compute the average 

velocity, �̅� = 𝑈:  

𝑈 =
1

𝐻
∫ 𝑢 𝑑𝑦

𝐻

0

𝑈 =
1

3

𝑔


sin 𝜃 𝐻2

 

 

(150) 

We can write Eq. 150 in dimensionless form multiplying both sides by 𝑈 (𝑔𝐻)⁄ :  

𝑈2

𝑔𝐻
=

1

3

𝑈𝐻


sin 𝜃 

 

(151) 

We recognize in the left hand side of Eq. 151 a Reynolds number based on the flow depth:  

𝑅𝑒𝐻 =
𝑈𝐻


 

 

(152) 

In the left hand side there is a dimensionless number that appears when gravity forces are 

important. It is the square of Froude number, which is defined as:  

𝐹𝑟 =
𝑈

√𝑔𝐻
 

 

(153) 

The equation that relates the average velocity of the flow with its depth is called in 

hydraulics “resistance law”, which in this case can be written as:  

𝐹𝑟2 =
1

3
𝑅𝑒𝐻 sin 𝜃 

 

(154) 

As we know the velocity distribution, we can also compute the coefficients 𝛼 and 𝛽 

introduced in the integral approach (Eqs. 38 and 53), resulting 𝛼 = 54 35 ≈ 1.543⁄  and 𝛽 =

18 15⁄ = 1.2. 
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We can also compute the shear stress distribution and its value at the bottom, that we called 

𝜏0:  

𝜏𝑦𝑥 = 𝜇
𝜕𝑢

𝜕𝑦

𝜏𝑦𝑥 = 𝜌𝑔 sin 𝜃(𝐻 − 𝑦)

 

 

(155) 

At the bottom (𝑦 = 0):  

𝜏0 = 𝜌𝑔𝐻 sin 𝜃 

(156) 

 

Note that the relationships given by Eqs. 155 and 156 are the same than those 

obtained with the application of the momentum theorem (Eqs. 72 and 64). Something that 

we cannot obtain from the integral approach is the resistance relationship given by Eq. 

154. The equivalent equation in the integral approach is the Darcy-Weisbach equation (Eq. 

47 that evolved into Eq. 57). However, this equation requires to know the friction factor 𝑓, 

that should be determined from other way (theoretically, numerically or experimentally). 

Using Eqs. 57 and 154 we can obtain the friction factor for a steady, uniform, 2-D laminar 

flow in a channel:  

sin 𝜃 = 𝑓
𝑈2

8𝑔𝐻
= 3

𝐹𝑟2

𝑅𝑒𝐻
 

 

(157) 

From where:  

𝑓 =
24

𝑅𝑒𝐻
 

 

(158) 

 Do not confuse the expression given by Eq. 158 with the expression for a cylindrical 

pipe, 𝑓 = 64 𝑅𝑒⁄  (and shown graphically in Moody’s diagram). Replacing in 𝑅𝑒 the diameter 

𝐷 by 4𝑅𝐻 we do not obtain Eq. 158 but 𝑓 = 16 𝑅𝑒𝐻⁄ , which is wrong. The factor 24 has been 

confirmed experimentally (Chow, 1988). 
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2.- REYNOLDS’ EQUATIONS FOR THE TURBULENCE 

 

 Turbulent flows are unsteady flows, in the sense that at any point of the flow domain, 

the flow properties (�⃗�, 𝑝) are fluctuating in time. This is shown in Fig.2.1, where the three 

components of the velocity measured with an acoustic Dopper velocimeter (ADV) are 

presented. It is easily seen the fluctuating characteristic of the data. It is rather difficult 

to use the data as it is presented in the figure. Osborne Reynolds in 1895 proposed that in 

the turbulent flow velocity and pressure could be decomposed into two terms, called by him 

mean-mean-motion and relative-mean-motion (Reynolds, 1895). The peer reviewers of the 

paper were G.G. Stokes and H. Lamb. In the first response that they sent to the editor 

(Lord Rayleigh), Stokes acknowledged that he did not understand the work, and Lamb 

indicated that much of the paper was obscure (Jackson and Launder, 2007). Currently, we 

call those terms mean (or average) and fluctuation. But, mean or average of what? 

 

VELOCITY TIME SERIES (z = 17.33 cm)
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Fig. 2.1.- Record of the three components of the velocity measured at 

one location in a turbulent flow in an open channel 
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 The simplest (or easier to understand) is the temporal mean or temporal average. 

Considering, for example, the record along the time 𝑡 of the 𝑢 component of the velocity at 

a given location �⃗� of the flow domain, the temporal average is defined as:  

�̅�(�⃗�) =
1

𝑇
∫ 𝑢(�⃗�, 𝑡)

𝑡0+𝑇

𝑡0

 𝑑𝑡 (2.1) 

WARNING! Unfortunately, we are using the same notation for to different averages. We 

used the overbar ̅  previously to denote the average velocity in a cross section (�̅� = 𝑄/𝐴), 

and now we are using the overbar to denote an average on time. Be careful! 

 If the average given by Eq. 2.1 does not depend on 𝑡0, the process is called statistically 

stationary.  

 According to the Reynolds decomposition, the velocity 𝑢(�⃗�, 𝑡) can be split in two 

components: its temporal average �̅�(�⃗�) and a fluctuation 𝑢′(�⃗�, 𝑡), such that:  

𝑢(�⃗�, 𝑡) = �̅�(�⃗�) + 𝑢′(�⃗�, 𝑡) (2.2) 

 The two components presented in Eq. 2.2 are shown in Fig. 2.2.  It is easy to show 

that:  

�̅̅� = �̅� 𝑢′̅ = 0 (2.3) 

 

 

 

 

 

 

 

 

  

Obviously, the same decomposition is valid for the other components of the velocity and 

pressure:  

𝑢 

 

𝑡 

�̅� 

 𝑢′ 

 

Fig. 2.2.- Reynolds decomposition 
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𝑣 = �̅� + 𝑣′ 𝑤 = �̅� + 𝑤′ 𝑝 = �̅� + 𝑝′ (2.4) 

 There is another kind of average, the ensemble average, which is more appropriate 

for the analysis. In this case, the experiment is repeated many times (𝑁), each repetition 

is called a realization. Thus, for realization 1, we have a record 𝑢1(�⃗�, 𝑡), for realization 2 we 

have a record 𝑢2(�⃗�, 𝑡), and so on. An average of the 𝑁 realizations for each (�⃗�, 𝑡) gives the 

ensemble average 〈𝑢(�⃗�, 𝑡)〉, defined as:  

〈𝑢(�⃗�, 𝑡)〉 =
1

𝑁
∑ 𝑢𝑖(�⃗�, 𝑡)

𝑁

𝑖=1

 (2.2) 

Note that the result of the ensemble average at a location �⃗�, is not a value as in the 

temporal average, but a function of time. This can be seen in Fig. 2.3. For statistical 

processes that are ergodic and stationaries, ensemble and temporal averages are equal: 

〈𝑢〉 = �̅�𝑖 (2.3) 

In the analysis that follows we will consider that the experimental data obtained in 

a turbulent flow behave statistically as an ergodic process strictly stationary (i.e., not only 

the averages are the same but also any other statistical property of the flow). 

It is easy to show the following properties for any variable 𝑏 that is a function of time  

𝜕𝑏

𝜕𝑥𝑖

̅̅ ̅̅
=

𝜕�̅�

𝜕𝑥𝑖
 (2.4) 

 

∫ 𝑏 𝑑𝑥𝑖

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
= ∫ �̅� 𝑑𝑥𝑖 (2.5) 

 

 Replacing the Reynolds-decomposed variables (Eqs. 2.2 y 2.4) into continuity 

equation (Eq. 87):  

𝜕(�̅� + 𝑢′)

𝜕𝑥
+

𝜕(�̅� + 𝑣′)

𝜕𝑦
+

𝜕(�̅� + 𝑤′)

𝜕𝑧
= 0 (2.6) 
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Averaging Eq. 2.6: 

𝜕(�̅� + 𝑢′)

𝜕𝑥
+

𝜕(�̅� + 𝑣′)

𝜕𝑦
+

𝜕(�̅� + 𝑤′)

𝜕𝑧

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
= 0 (2.7) 

 

𝜕�̅�

𝜕𝑥
+

𝜕�̅�

𝜕𝑦
+

𝜕�̅�

𝜕𝑧
+

𝜕𝑢′

𝜕𝑥
+

𝜕𝑣′

𝜕𝑦
+

𝜕𝑤′

𝜕𝑧

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
= 0 (2.8) 

t 

u 

t 

u 

t 

u 

t 

u 

REALIZATION 1 

REALIZATION 2 

REALIZATION 𝑁 

ENSEMBLE 

AVERAGE 

. .

. .

. .

 

𝑢1(𝑡0) 

𝑢𝑁(𝑡0) 

𝑢2(𝑡0) 

〈𝑢(𝑡0)〉 =
1

𝑁
∑ 𝑢𝑖(𝑡0)

𝑁

𝑖=1

 

𝑡0 

𝑡0 

𝑡0 

𝑡0 

Fig. 2.3.- Ensemble average 
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𝜕�̅̅�

𝜕𝑥
+

𝜕�̅̅�

𝜕𝑦
+

𝜕�̅̅�

𝜕𝑧
+

𝜕𝑢′̅

𝜕𝑥
+

𝜕𝑣′̅

𝜕𝑦
+

𝜕𝑤′̅̅ ̅

𝜕𝑧
= 0 (2.9) 

 

Using Eqs. 2.3:  

𝜕�̅�

𝜕𝑥
+

𝜕�̅�

𝜕𝑦
+

𝜕�̅�

𝜕𝑧
= 0 (2.10) 

  

Substracting Eq. 2.10 to Eq. 2.6:  

𝜕𝑢′

𝜕𝑥
+

𝜕𝑣′

𝜕𝑦
+

𝜕𝑤′

𝜕𝑧
= 0 (2.11) 

 

 Eqs. 2.10 and 2.11 indicate that the averaged velocities and their fluctuations satisfy 

continuity.  

 Before repeating the same analysis with the Navier-Stokes equations, we will modify 

slightly the equations. We will work first with the 𝑥 component of the momentum equation. 

Let’s multiply the continuity equation by 𝑢:  

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑢

𝜕𝑣

𝜕𝑦
+ 𝑢

𝜕𝑤

𝜕𝑧
= 0 (2.12) 

Multiplying Eq. 2.12 by 𝜌  and adding it to the 𝑥 component of the Navier-Stokes 

equation (Eq. 121): 

𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑢

𝜕𝑣

𝜕𝑦
+ 𝑢

𝜕𝑤

𝜕𝑧
)

= −
𝜕𝑝

𝜕𝑥
+ 𝜇 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2
) + 𝜌𝑔𝑥 

 

(2.13) 

We can recognize some product derivatives in the first parenthesis:  
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𝑢
𝜕𝑢

𝜕𝑥
+ 𝑢

𝜕𝑢

𝜕𝑥
= 2𝑢

𝜕𝑢

𝜕𝑥
=

𝜕𝑢2

𝜕𝑥

𝑣
𝜕𝑢

𝜕𝑦
+ 𝑢

𝜕𝑣

𝜕𝑦
=

𝜕𝑢𝑣

𝜕𝑦

𝑤
𝜕𝑢

𝜕𝑧
+ 𝑢

𝜕𝑤

𝜕𝑧
=

𝜕𝑢𝑤

𝜕𝑧

 (2.14) 

Thus, the 𝑥 component of the Navier-Stokes is rewritten as 

𝜌 (
𝜕𝑢

𝜕𝑡
+

𝜕𝑢2

𝜕𝑥
+

𝜕𝑢𝑣

𝜕𝑦
+

𝜕𝑢𝑤

𝜕𝑧
) = −

𝜕𝑝

𝜕𝑥
+ 𝜇 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2
) + 𝜌𝑔𝑥 

 

(2.13) 

Now, we will replace the Reynolds decomposed variables in Eq. 2.13: and take the 

average. The resulting equation is: 

𝜌 (
𝜕(�̅� + 𝑢′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜕𝑡
+

𝜕(�̅� + 𝑢′)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝜕𝑥
+

𝜕(�̅� + 𝑢′)(�̅� + 𝑣′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜕𝑦
+

𝜕(�̅� + 𝑢′)(�̅� + 𝑤′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝜕𝑧
)

= −
𝜕(�̅� + 𝑝′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝜕𝑥
+ 𝜇∇2(�̅� + 𝑢′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝜌𝑔𝑥 

 

(2.14) 

The linear terms in Eq. 2.14 are easily decomposed into their average and 

fluctuating parts:  

𝜕(�̅� + 𝑢′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜕𝑡
=

𝜕�̅� ̅

𝜕𝑡
+

𝜕𝑢′̅

𝜕𝑡
= 0 

 

(2.15) 

𝜕(�̅� + 𝑝′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝜕𝑥
=

𝜕�̅� ̅

𝜕𝑥
+

𝜕𝑝′̅

𝜕𝑥
=

𝜕𝑝 ̅

𝜕𝑥
 

 

(2.16) 

∇2(�̅� + 𝑢′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = ∇2�̅̅� + ∇2𝑢′̅ = ∇2�̅� (2.17) 

Let’s analyse now the non-linear terms:  

𝜕(�̅� + 𝑢′)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝜕𝑥
=

𝜕(�̅�2 + 2�̅�𝑢′ + 𝑢′2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)

𝜕𝑥
=

𝜕�̅�2̅̅ ̅

𝜕𝑥
+

𝜕2�̅�𝑢′̅̅ ̅̅ ̅̅

𝜕𝑥
+

𝜕𝑢′̅2̅̅ ̅̅

𝜕𝑥
=

𝜕�̅�2

𝜕𝑥
+

𝜕𝑢′2̅̅ ̅̅

𝜕𝑥
 (2.18) 
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𝜕(�̅� + 𝑢′)(�̅� + 𝑣′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜕𝑦
=

𝜕�̅��̅�

𝜕𝑦
+

𝜕𝑢′𝑣′̅̅ ̅̅ ̅

𝜕𝑦
 (2.19) 

 

𝜕(�̅� + 𝑢′)(�̅� + 𝑤′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝜕𝑧
=

𝜕�̅��̅�

𝜕𝑧
+

𝜕𝑢′𝑤′̅̅ ̅̅ ̅̅

𝜕𝑧
 (2.20) 

  

Thus, the averaged 𝑥 component of the Reynolds equation becomes:  

𝜌 (
𝜕�̅�2

𝜕𝑥
+

𝜕𝑢′2̅̅ ̅̅

𝜕𝑥
+

𝜕�̅��̅�

𝜕𝑦
+

𝜕𝑢′𝑣′̅̅ ̅̅ ̅

𝜕𝑦
+

𝜕�̅��̅�

𝜕𝑧
+

𝜕𝑢′𝑤′̅̅ ̅̅ ̅̅

𝜕𝑧
) = −

𝜕𝑝 ̅

𝜕𝑥
+ 𝜇∇2�̅� + 𝜌𝑔𝑥 (2.21) 

The right hand side of Eq. 2.21 can also be written as  

𝜕�̅�2

𝜕𝑥
+

𝜕�̅��̅�

𝜕𝑦
+

𝜕�̅��̅�

𝜕𝑧
+

𝜕𝑢′2̅̅ ̅̅

𝜕𝑥
+

𝜕𝑢′𝑣′̅̅ ̅̅ ̅

𝜕𝑦
+

𝜕𝑢′𝑤′̅̅ ̅̅ ̅̅

𝜕𝑧

= 2�̅�
𝜕�̅�

𝜕𝑥
+ �̅�

𝜕�̅�

𝜕𝑦
+ �̅�

𝜕�̅�

𝜕𝑦
+ �̅�

𝜕�̅�

𝜕𝑧
+ �̅�

𝜕�̅�

𝜕𝑧
+

𝜕𝑢′2̅̅ ̅̅

𝜕𝑥
+

𝜕𝑢′𝑣′̅̅ ̅̅ ̅

𝜕𝑦

+
𝜕𝑢′𝑤′̅̅ ̅̅ ̅̅

𝜕𝑧
 

(2.22) 

 

𝜕�̅�2

𝜕𝑥
+

𝜕�̅��̅�

𝜕𝑦
+

𝜕�̅��̅�

𝜕𝑧
+

𝜕𝑢′2̅̅ ̅̅

𝜕𝑥
+

𝜕𝑢′𝑣′̅̅ ̅̅ ̅

𝜕𝑦
+

𝜕𝑢′𝑤′̅̅ ̅̅ ̅̅

𝜕𝑧

= �̅� (
𝜕�̅�

𝜕𝑥
+

𝜕�̅�

𝜕𝑦
+

𝜕�̅�

𝜕𝑧
) + �̅�

𝜕�̅�

𝜕𝑥
+ �̅�

𝜕�̅�

𝜕𝑦
+ �̅�

𝜕�̅�

𝜕𝑧
+

𝜕𝑢′2̅̅ ̅̅

𝜕𝑥
+

𝜕𝑢′𝑣′̅̅ ̅̅ ̅

𝜕𝑦

+
𝜕𝑢′𝑤′̅̅ ̅̅ ̅̅

𝜕𝑧
 

(2.23) 

Using Eq. 2.10, the term in parenthesis can be eliminated and (2.23) written as:  

𝜕�̅�2

𝜕𝑥
+

𝜕�̅��̅�

𝜕𝑦
+

𝜕�̅��̅�

𝜕𝑧
+

𝜕𝑢′2̅̅ ̅̅

𝜕𝑥
+

𝜕𝑢′𝑣′̅̅ ̅̅ ̅

𝜕𝑦
+

𝜕𝑢′𝑤′̅̅ ̅̅ ̅̅

𝜕𝑧

= �̅�
𝜕�̅�

𝜕𝑥
+ �̅�

𝜕�̅�

𝜕𝑦
+ �̅�

𝜕�̅�

𝜕𝑧
+

𝜕𝑢′2̅̅ ̅̅

𝜕𝑥
+

𝜕𝑢′𝑣′̅̅ ̅̅ ̅

𝜕𝑦
+

𝜕𝑢′𝑤′̅̅ ̅̅ ̅̅

𝜕𝑧
 

(2.24) 
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Eq. 2.21 becomes:  

𝜌 (�̅�
𝜕�̅�

𝜕𝑥
+ �̅�

𝜕�̅�

𝜕𝑦
+ �̅�

𝜕�̅�

𝜕𝑧
+

𝜕𝑢′2̅̅ ̅̅

𝜕𝑥
+

𝜕𝑢′𝑣′̅̅ ̅̅ ̅

𝜕𝑦
+

𝜕𝑢′𝑤′̅̅ ̅̅ ̅̅

𝜕𝑧
) = −

𝜕𝑝 ̅

𝜕𝑥
+ 𝜇∇2�̅� + 𝜌𝑔𝑥 (2.25) 

Remember that Eq. 2.21 is nothing else than Newton’s second law applied to an 

incompressible Newtonian fluid and expressed in terms of temporal mean values. In order 

to interpret the meaning of Eq. 2.21, we should remember the equation of Newton’s second 

law: 𝑑(𝑚�⃗�) 𝑑𝑡⁄ = �⃗�. As the mass is preserved, we can write 𝑚𝑑(�⃗�) 𝑑𝑡⁄ = �⃗�. For simplicity, 

let’s consider the 𝑥 component: 

𝑚
𝑑𝑢

𝑑𝑡
= 𝐹𝑥 (2.26) 

Of course, Newton’s second law is not applied to fluids in the form of Eq. 2.26, but as 

Eq. 51 (integral approach) or Eq. 124 (differential approach), but it is used in this 

explanation for the sake of clarity. The problem with Eq. 2.26 (and the reason why in fluids 

is expressed in a different way, is to define the mass 𝑚 in a flow. Anyway, we can divide 

Eq. 2.26 by a volume and work with forces per unit volume,  𝐹𝑉𝑥 ≡ 𝐹𝑥 𝑉⁄ :  

𝜌
𝑑𝑢

𝑑𝑡
= 𝐹𝑉𝑥 (2.27) 

We can identify 𝐹𝑉𝑥 in Eq. 124 as the resulting of the force due to pressure, viscosity, 

and gravity. We would like to work with a temporal mean acceleration, and write Eq. 2.27 

as:  

𝜌
𝑑�̅�

𝑑𝑡
= �̅�𝑥 (2.28) 

We can define an acceleration based on the temporal mean quantities. For a 

statistically stationary flow this acceleration is:  

𝑑�̅�

𝑑𝑡
= �̅�

𝜕�̅�

𝜕𝑥
+ �̅�

𝜕�̅�

𝜕𝑦
+ �̅�

𝜕�̅�

𝜕𝑧
 (2.29) 

Thus, introducing Eq. 2.29 into Eq. 2.25:  

𝜌 (
𝑑�̅�

𝑑𝑡
+

𝜕𝑢′2̅̅ ̅̅

𝜕𝑥
+

𝜕𝑢′𝑣′̅̅ ̅̅ ̅

𝜕𝑦
+

𝜕𝑢′𝑤′̅̅ ̅̅ ̅̅

𝜕𝑧
) = −

𝜕𝑝 ̅

𝜕𝑥
+ 𝜇∇2�̅� + 𝜌𝑔𝑥 (2.30) 
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We can see that Eq. 2.30 is very similar to Eq. 2.28. The only problem is the terms 

due to the fluctuations in the parenthesis. In order to have only the variation of momentum 

in the left hand side of Eq. 2.30, we take the terms due to the fluctuations towards the right 

hand side of the equation:  

𝜌
𝑑�̅�

𝑑𝑡
= −

𝜕𝑝 ̅

𝜕𝑥
+ 𝜇∇2�̅� + 𝜌𝑔𝑥 − 𝜌 (

𝜕𝑢′2̅̅ ̅̅

𝜕𝑥
+

𝜕𝑢′𝑣′̅̅ ̅̅ ̅

𝜕𝑦
+

𝜕𝑢′𝑤′̅̅ ̅̅ ̅̅

𝜕𝑧
) (2.31) 

To pass the terms due to the fluctuations from one side of the equal sign to the other 

side is much more than an algebraic step. It changes the interpretation that we can give to 

the average of products of the fluctuations. As they are now in the right side of the equation, 

we can interpret them as forces arising from the turbulence. Thus, the terms −𝜌𝑢′2̅̅ ̅̅ , −𝜌𝑢′𝑣′̅̅ ̅̅ ̅̅  

and −𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅   are called Reynold’s apparent stresses or, simply, Reynold’s stresses , or 

turbulent stresses. Let’s work with the terms associated to the viscous stresses 𝜇∇2�̅�  :  

∇2�̅� =  
𝜕2�̅�

𝜕𝑥2
+

𝜕2�̅�

𝜕𝑦2
+

𝜕2�̅�

𝜕𝑧2
 (2.32) 

As the continuity equation is ∇ ∙ �⃗� = 0, we can take its derivative with respect to 𝑥 

and add to Eq. 2.32, and it will not change, i.e.:  

∇2�̅� = ∇2�̅� +  
𝜕

𝜕𝑥
∇ ∙ �⃗̅� (2.33) 

 

∇2�̅� =
𝜕2�̅�

𝜕𝑥2
+

𝜕2�̅�

𝜕𝑦2
+

𝜕2�̅�

𝜕𝑧2
+

𝜕2�̅�

𝜕𝑥𝜕𝑥
+

𝜕2�̅�

𝜕𝑥𝜕𝑦
+

𝜕2�̅�

𝜕𝑥𝜕𝑧
 (2.34) 

 

∇2�̅� =
𝜕

𝜕𝑥

𝜕�̅�

𝜕𝑥
+

𝜕

𝜕𝑦

𝜕�̅�

𝜕𝑦
+

𝜕

𝜕𝑧

𝜕�̅�

𝜕𝑧
+

𝜕

𝜕𝑥

𝜕�̅�

𝜕𝑥
+

𝜕

𝜕𝑦

𝜕�̅�

𝜕𝑥
+

𝜕

𝜕𝑧

𝜕�̅�

𝜕𝑥
 (2.35) 

 

∇2�̅� =
𝜕

𝜕𝑥
(2

𝜕�̅�

𝜕𝑥
) +

𝜕

𝜕𝑦
(

𝜕�̅�

𝜕𝑦
+

𝜕�̅�

𝜕𝑥
) +

𝜕

𝜕𝑧
(

𝜕�̅�

𝜕𝑧
+

𝜕�̅�

𝜕𝑥
) (2.36) 

 

Multiplying Eq. 2.36 by 𝜇:  
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𝜇∇2�̅� =
𝜕

𝜕𝑥
(2𝜇

𝜕�̅�

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝜇 (

𝜕�̅�

𝜕𝑦
+

𝜕�̅�

𝜕𝑥
)) +

𝜕

𝜕𝑧
(𝜇 (

𝜕�̅�

𝜕𝑧
+

𝜕�̅�

𝜕𝑥
)) (2.37) 

We identify the terms in parenthesis as some of the viscous stress that appear in Eq. 

114. Denoting with the sub-index 𝑉 to denote “viscous”, we have:  

𝜏𝑉𝑥𝑥 = 2𝜇
𝜕�̅�

𝜕𝑥
 , 𝜏𝑉𝑦𝑥 = 𝜇 (

𝜕�̅�

𝜕𝑦
+

𝜕�̅�

𝜕𝑥
) , 𝜏𝑉𝑧𝑥 = 𝜇 (

𝜕�̅�

𝜕𝑧
+

𝜕�̅�

𝜕𝑥
) (2.38) 

 

We can write now:  

𝜇∇2�̅� =
𝜕𝜏𝑉𝑥𝑥

𝜕𝑥
+

𝜕𝜏𝑉𝑦𝑥

𝜕𝑦
+

𝜕𝜏𝑉𝑧𝑥

𝜕𝑧
 (2.39) 

Replacing in Eq. 2.31:  

𝜌
𝑑�̅�

𝑑𝑡
= −

𝜕𝑝 ̅

𝜕𝑥
+

𝜕𝜏𝑉𝑥𝑥

𝜕𝑥
+

𝜕𝜏𝑉𝑦𝑥

𝜕𝑦
+

𝜕𝜏𝑉𝑧𝑥

𝜕𝑧
+ 𝜌𝑔𝑥 − 𝜌 (

𝜕𝑢′2̅̅ ̅̅

𝜕𝑥
+

𝜕𝑢′𝑣′̅̅ ̅̅ ̅

𝜕𝑦
+

𝜕𝑢′𝑤′̅̅ ̅̅ ̅̅

𝜕𝑧
) (2.40) 

 

𝜌
𝑑�̅�

𝑑𝑡
= −

𝜕𝑝 ̅

𝜕𝑥
+

𝜕

𝜕𝑥
(𝜏𝑉𝑥𝑥 − 𝜌𝑢′2̅̅ ̅̅ ) +

𝜕

𝜕𝑦
(𝜏𝑉𝑦𝑥 − 𝜌𝑢′𝑣′̅̅ ̅̅ ̅) +

𝜕

𝜕𝑧
(𝜏𝑉𝑧𝑥 − 𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ )

+ 𝜌𝑔𝑥 

(2.41) 

Using the sub-index 𝑇 to denote the turbulent or Reynolds stresses:  

𝜏𝑇𝑥𝑥 = −𝜌𝑢′2̅̅ ̅̅  , 𝜏𝑇𝑦𝑥 = −𝜌𝑢′𝑣′̅̅ ̅̅ ̅ , 𝜏𝑇𝑧𝑥 = −𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅  (2.42) 

We define the total stress as the sum of the viscous and the turbulent one:  

𝑇𝑥𝑥 = 𝜏𝑉𝑥𝑥 + 𝜏𝑇𝑥𝑥 , 𝑇𝑦𝑥 = 𝜏𝑉𝑦𝑥 + 𝜏𝑇𝑦𝑥 , 𝑇𝑧𝑥 = 𝜏𝑉𝑧𝑥 + 𝜏𝑇𝑧𝑥 (2.43) 

In general:  

𝑇𝑖𝑗 = 𝜏𝑉𝑖𝑗 + 𝜏𝑇𝑖𝑗  (2.44) 
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Where the viscous stress (associated to the temporal mean velocities) is given by:  

𝜏𝑉𝑖𝑗 = 𝜇 (
𝜕�̅�𝑖

𝜕𝑥𝑗
+

𝜕�̅�𝑗

𝜕𝑥𝑖
)  (2.45) 

And the turbulent stress is: 

𝜏𝑇𝑖𝑗 = −𝜌𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅   (2.46) 

Thus, the momentum equation in the 𝑥direction for a stationary turbulent flow, in 

terms of the temporal mean values is given by:  

𝜌 (�̅�
𝜕�̅�

𝜕𝑥
+ �̅�

𝜕�̅�

𝜕𝑦
+ �̅�

𝜕�̅�

𝜕𝑧
) = −

𝜕𝑝 ̅

𝜕𝑥
+

𝜕𝑇𝑥𝑥

𝜕𝑥
+

𝜕𝑇𝑦𝑥

𝜕𝑦
+

𝜕𝑇𝑧𝑥

𝜕𝑧
+ 𝜌𝑔𝑥 (2.47) 

In the same way, we can obtain the 𝑦 and 𝑧 components:  

𝜌 (�̅�
𝜕�̅�

𝜕𝑥
+ �̅�

𝜕�̅�

𝜕𝑦
+ �̅�

𝜕�̅�

𝜕𝑧
) = −

𝜕𝑝 ̅

𝜕𝑦
+

𝜕𝑇𝑥𝑦

𝜕𝑥
+

𝜕𝑇𝑦𝑦

𝜕𝑦
+

𝜕𝑇𝑧𝑦

𝜕𝑧
+ 𝜌𝑔𝑦 (2.48) 

 

𝜌 (�̅�
𝜕�̅�

𝜕𝑥
+ �̅�

𝜕�̅�

𝜕𝑦
+ �̅�

𝜕�̅�

𝜕𝑧
) = −

𝜕𝑝 ̅

𝜕𝑧
+

𝜕𝑇𝑥𝑧

𝜕𝑥
+

𝜕𝑇𝑦𝑧

𝜕𝑦
+

𝜕𝑇𝑧𝑧

𝜕𝑧
+ 𝜌𝑔𝑧 (2.49) 

 

 Eqs. 2.47, 2.48 and 2.49 are the Reynolds equations for turbulent flows, and they 

constitute an important advance in the study and analysis of the turbulence. In his paper, 

Reynolds also derived and discussed the equation for the turbulent kinetic energy. 

 Although we have had some progress in the analysis of turbulent flows, we are not 

in conditions to solve any problem yet. We have a system formed by 4 partial differential 

equations (with their boundary conditions): Eqs. 2.10, 2.47, 2.48 and 2.49. But we have 10 

unknowns: �̅�, �̅�, �̅�, �̅�, 𝑢′2̅̅ ̅̅ , 𝑣′2̅̅ ̅̅ , 𝑤′2̅̅ ̅̅̅, 𝑢′𝑣′̅̅ ̅̅ ̅ , 𝑢′𝑤′̅̅ ̅̅ ̅̅  , 𝑣′𝑤′̅̅ ̅̅ ̅̅ . We cannot solve any problem of turbulence 

using the equations derived with the Reynolds decomposition approach if we do not know 

relations for −𝜌𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅ . This is the so-called “closure problem of turbulence”. Basically, the 

problem is how to model the turbulent stresses. As there is not a theory based only on the 

first principles of the physics, all the available models necessarily require some 

experimental data. We will present two closures of the problem, both of them widely used 

in engineering. They are the Boussinesq’s eddy viscosity model and Prandtl mixing length 

theory. 
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Boussinesq closure of the turbulence: Eddy viscosity 

Boussinesq published in 1877 a compilation of his research on water flows. (The book 

can be read in the site http://gallica.bnf.fr/ark:/12148/bpt6k56673076, but it cannot be 

downloaded). In Eqs. 12 of his book, Boussinesq presents the stresses in a similar form (but 

with slightly different notation) than those given in Eq. 114 in tensorial notation, or Eqs. 

115 to 120 (see Fig. 2.4). The big difference is that in the later equations, appears 𝜇, and in 

Boussinesq’s equations there is a coefficient 𝜀. But before to discuss the meaning and value 

of 𝜀, it is interesting to note that Boussinesq was solving a problem that arose almost 20 

years later, with Reynolds. It is interesting to note that Boussinesq already considered 

temporal averages, but his mistake was to assume that the velocity fluctuations were not 

correlated, i.e., 𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅ = 0 (using our notation). In this way, he lost additional components to 

the stresses. However, it was known that the equations of Navier-Stokes provided results 

in agreement with the experiments for conduits with small flow area, but it failed for larger 

conduits. In the latter case, additional effects appear in the flow, with the final effect that 

the viscosity seems to be larger (in our language we would say that the Navier-Stokes were 

in agreement with measurements in laminar flows, but other effects should be taking into 

account when dealing with turbulent flows. Details are in the first 50 pages of Boussinesq’s 

book. For open channel flows he gives:  

𝜀 = 𝜌𝑔𝐴ℎ𝑢0  (2.50) 

Eq. 2.50 corresponds to Boussinesq’s Eq. 13. In an open channel flow, ℎ is the flow depth 

and 𝑢0 is the “velocity at the wall”. 𝐴 is a coefficient that depends on the wall roughness 

varies little with ℎ and 𝑢0. Note that in order that Eq. 2.50 be dimensionally homogeneous, 

the dimensions of  𝐴 must be T2L-1 (𝑡𝑖𝑚𝑒2 𝑙𝑒𝑛𝑔𝑡ℎ⁄ ).  

 In our current language, 𝜀 is named eddy viscosity, or turbulent viscosity. Thus, 

according to Boussinesq, the turbulent stresses 𝜏𝑇𝑖𝑗, can be computed in the same way than 

Fig. 2.4.- Equations for the stresses presented by Boussinesq 

in 1877 in his Essai sur la théorie des eaux courantes. 𝜺 is the 

eddy viscosity. 

http://gallica.bnf.fr/ark:/12148/bpt6k56673076
http://gallica.bnf.fr/ark:/12148/bpt6k56673076
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the viscous stresses, using the eddy viscosity 𝜀 instead of 𝜇, the molecular dynamic 

viscosity. The turbulent stresses become: 

 

𝜏𝑇𝑥𝑥 = 2𝜀
𝜕�̅�

𝜕𝑥
 (2.51) 

𝜏𝑇𝑦𝑦 = 2𝜀
𝜕�̅�

𝜕𝑦
 (2.52) 

𝜏𝑇𝑧𝑧 = 2𝜀
𝜕�̅�

𝜕𝑧
 (2.53) 

𝜏𝑇𝑥𝑦 = 𝜏𝑇𝑦𝑥 = 𝜀 (
𝜕�̅�

𝜕𝑦
+

𝜕�̅�

𝜕𝑥
) (2.54) 

𝜏𝑇𝑥𝑧 = 𝜏𝑇𝑧𝑥 = 𝜀 (
𝜕�̅�

𝜕𝑧
+

𝜕�̅�

𝜕𝑥
) (2.55) 

𝜏𝑇𝑦𝑧 = 𝜏𝑇𝑧𝑦 = 𝜀 (
𝜕�̅�

𝜕𝑧
+

𝜕�̅�

𝜕𝑦
) (2.60) 

There is a strong difference between 𝜇 and 𝜀: the dynamic viscosity 𝜇  is a property of the 

fluid and the eddy viscosity 𝜀 is a property of the flow. Thus, if we are working with water 

at a given temperature, we can look for the value of the viscosity in any book and use it, 

independently if the flow is in a cylindrical or square pipe, a rectangular or trapezoidal 

channel. On the contrary, the eddy viscosity depends on the flow and the geometry and it 

is independent of the fluid (at least, for flows with high Reynolds numbers). As it is was 

said in the Introduction, one of the features of the turbulent flows is they are highly 

efficient in the momentum transfer process, when compared with laminar flows. Thus, 

another characteristic of the eddy viscosity is that it is much larger (several orders of 

magnitude) than the dynamic viscosity:𝜀 ≫ 𝜇. 

In analogy to the molecular kinematic viscosity  = 𝜇 𝜌⁄ , a kinematic eddy viscosity 

is also used 𝑇 = 𝜀 𝜌⁄  . Eddy viscosities for some flow configurations are presented in Table 

2.1. Known the eddy viscosity, we can solve the problem of getting the velocity distribution 

in a turbulent flow. We have to solve the system of partial differential equations formed by 

continuity and Reynolds equations, in addition to an expression for the eddy viscosity. 

WARNING! In the current technical literature 𝜀 is frequently used to design the kinematic 

eddy viscosity (i.e., 𝑇 = 𝜀) and not the dynamic turbulent viscosity, as Boussinesq designed 

in his original work and shown in Fig. 2.4..  
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As an example of Boussinesq’s eddy viscosity approach to close Eqs. 2.47 to 2.49, we 

can solve the problem of the 2-D steady, uniform, turbulent flow on an inclined plane that 

we have been using as example along this notes (Fig. 18). Using the same arguments than 

in the laminar case, the equations of continuity (Eq. 2.10) and momentum (Reynolds 

equations, Eqs. 2.47 to 2.49) are reduced to:  

𝜕�̅�

𝜕𝑥
= 0 (2.61) 

 

Reynolds equation in the 𝑥 direction:  

0 =
𝜕𝑇𝑦𝑥

𝜕𝑦
+ 𝜌𝑔𝑥 (2.62) 

Reynolds equation in the 𝑦 direction: 

 

 

Table 2.1.- EDDY VISCOSITY FOR SOME FLOW CONFIGURATIONS 

FLOW CONFIGURATION EDDY VISCOSITY 

2-D Open channel flow 

 

 

 

𝑇 = 𝐻𝑢∗(1 − ) 

 = 0.4   ;     =
𝑦

𝐻
 

Axisymetric jet 

 

 

 

𝑇 = 0.013𝑉0𝑑0 
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Central region of the flow in a pipe 

 

 

𝑇


=

𝐶

2
𝑅𝑒√

𝑓

8
 

𝐶 ≈ 0.07   ;    𝑅𝑒 =
𝑈𝐷


 

 

  

0 = −
𝜕𝑝 ̅

𝜕𝑦
+ 𝜌𝑔𝑦 (2.63) 

From where we obtain that the mean pressure distribution is hydrostatic. With the 

boundary condition 𝑦 = 𝐻 , 𝑝 ̅ = 0 (relative pressure), we obtain:  

𝑝 ̅ = 𝜌𝑔 cos 𝜃 (𝐻 − 𝑦) (2.64) 

Reynolds equation along 𝑥 (Eq. 2.62) can be integrated once with respect to 𝑦:  

𝑇𝑦𝑥 = −𝜌𝑔𝑥𝑦 + 𝐶1 (2.65) 

As there is not shear acting on the free surface, the boundary condition at 𝑦 = 𝐻 is 

𝑇𝑦𝑥 = 0. Thus:  

𝐶1 = 𝜌𝑔𝑥𝐻 (2.66) 

Using Eq. 2.43 and the value of 𝐶1 in Eq. 2.65:  

𝜏𝑉𝑦𝑥 + 𝜏𝑇𝑦𝑥 = 𝜌𝑔𝑥(𝐻 − 𝑦) (2.67) 

Replacing the shear stresses by Eqs. 118 and 2.54:  

(𝜇 + 𝜀)
𝜕�̅�

𝜕𝑦
= 𝜌𝑔𝑥(𝐻 − 𝑦) (2.68) 

Considering that the molecular viscosity 𝜇 is much smaller than the eddy viscosity 

𝜀:  
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𝜀
𝜕�̅�

𝜕𝑦
=̃ 𝜌𝑔𝑥(𝐻 − 𝑦) (2.69) 

To drop 𝜇 from the momentum equation limits its use only to the region where 

turbulence dominates over viscosity. We will see later that even in highly turbulent flows 

bounded by smooth walls, in a small region near the wall molecular viscosity effects are 

important. 

 In order to integrate Eq. 2.69, we have to decide what value of 𝜀 will be used. We can 

work with the expression given by Boussinesq (Eq. 2.50) or that presented in Table 2.1. 

Solution considering Boussinesq expression for 𝜀: 

Eq. 2.50 is 𝜀 = 𝜌𝑔𝐴ℎ𝑢0 , and Eq. 2.69 becomes:  

𝜕�̅�

𝜕𝑦
=

𝑔𝑥

𝜌𝑔𝐴ℎ𝑢0

(𝐻 − 𝑦) (2.70) 

Integrating:  

�̅� =
𝑔𝑥

𝑔𝐴ℎ𝑢0
(𝐻𝑦 −

1

2
𝑦2) + 𝐶2 (2.71) 

Although we still have to determine the integration constant 𝐶2, the velocity 

distribution for a turbulent flow given by  Eq. 2.71 is essentially the same than the 

distribution obtained for a laminar flow (Eq. 149) (parabolic distribution). This should not 

surprise us: we only changed the value of the constant that multiplies the derivative of the 

velocity. Determination of 𝐶2 is conceptually more complicated. We cannot impose the 

condition that at 𝑦 = 0, �̅� = 0 because very close to the bottom Eq. 2.69 is not valid. We 

should know the distance 𝑦𝑇 from the wall where turbulence dominates, and the value of 

the velocity, 𝑢𝑇, at that location. Instead of doing that, we will follow Boussinesq ideas. 

According to him, in there is a velocity at the wall, 𝑢0, which is rather large. In a footnote 

of his book (p. 51) he works a typical value of 1 m/s. Thus, according to Boussinesq, at 𝑦 =

0, �̅� = 𝑢0, and the resulting velocity distribution is:  

�̅� = 𝑢0 +
sin 𝜃

𝐴ℎ𝑢0
(𝐻𝑦 −

1

2
𝑦2) (2.72) 
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A comparison of the laminar and Boussinesq’s turbulent velocity profiles are sketched in 

Fig. 2.4. A feature of the turbulent velocity profiles is that they are flatter than the laminar 

ones. In Boussinesq constant eddy viscosity model this is achieved by the term 𝑢0, the fluid 

slip at the wall. 

 

 

 

Solution considering the expression given in Table 2.1 for 𝜀: 

 

In this case, the eddy viscosity is given by:  

𝜀 = 𝜌𝑢∗

𝑦

𝐻
(𝐻 − 𝑦) (2.73) 

The equation of motion gives:  

𝜕�̅�

𝜕𝑦
=

𝜌𝑔𝑥

𝜀
(𝐻 − 𝑦) =

𝑔𝑥𝐻

𝑢∗𝑦
 (2.74) 

 

Integrating:  

�̅� =
𝑔𝑥𝐻

𝑢∗
ln(𝑦) + 𝐶3 (2.75) 

Fig. 2.4.- Comparison of the velocity distribution for laminar flow and 

turbulent flow according to the eddy viscosity model of Boussinesq 

(1877) that includes a velocity 𝒖𝟎 at the wall.  
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Again, we cannot use a boundary condition at 𝑦 = 0 to determine the integration 

constant 𝐶3. Mathematically, the logarithm in Eq. 2.75 blows up. Physically, the velocity 

distribution is valid only in the flow region where turbulence dominates (we have neglected 

𝜇). 𝐶3 is determined by fitting Eq. 2.75 to experimental data. Using Eqs. 140 and 156 

together to the definition of shear velocity (Eq. 67) 𝑔𝑥𝐻 = 𝑔𝐻 sin 𝜃 = 𝜏0 𝜌⁄ = 𝑢∗
2:  

�̅� =
𝑢∗


ln(𝑦) + 𝐶3 (2.76) 

 The logarithmic velocity distribution given by Eq. 2.76 is sketched in Fig.2.5. It is 

observed that, for 𝑦 smaller than a certain value, the velocity becomes negative and �̅� →

−∞ when 𝑦 → 0. Obviously, the velocity distribution is valid only in the region where the 

flow is turbulent, i.e., for  𝑦 larger than a specific distance from the bottom. 

 It is worth to remark that the velocity profiles obtained for turbulent flow relay on 

experimental data. The parabolic profile of Boussinesq requires to know experimentally 

the coefficient 𝐴 and to have a method to determine 𝑢0. The logarithmic profile require 

experiments to determine  and 𝐶3. The opposite happens with the velocity profile for 

laminar flow. The parabolic profile obtained from the Navier-Stokes equation and given by 

Eq. 149 only requires to know the properties of the fluid, the flow and the acceleration due 

to gravity. 

Fig. 2.5.- Logarithmic velocity profile. The velocity distribution is 

valid from a certain distance of the bottom, where the flow is 

turbulent. 
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Prandtl closure of the turbulence: Mixing length 

Ludwig Prandtl is one of the great researchers in fluid mechanics of the XX century.  

His mixing length concept (or theory), is just one of his many contributions to the study of 

turbulence. It was proposed in 1925 (Prandtl, 1925).  

In the mixing length theory, Prandtl assumes that portions of fluid can move due to 

the velocity fluctuations a distance 𝑙 without losing its identity, basically preserving its 

momentum (per unit volume). To fix ideas, let’s consider a 2-D flow with a mean velocity 

distribution as that sketched in Fig.2.6. In that figure, the continuous curve represents the 

mean velocity profile and the circles a mass of fluid. A mass of fluid that initially was at A 

with velocity �̅�(𝑦), due to the vertical fluctuation 𝑣′ is transported to the location B, without 

losing its identity, i.e., preserving its momentum in the 𝑥 direction (per unit volume) 𝜌�̅�. 

The distance of the displacement of the mass of fluid is 𝑙, named mixing length by Prandtl. 

As the mass of fluid did not change its properties during the displacement along the 𝑦 axis, 

when it arrives to the location B has the velocity �̅�(𝑦), which is imposed at the level (𝑦 + 𝑙). 

It is easy to see that the difference between this new velocity at (𝑦 + 𝑙) and the mean 

velocity at this level, �̅�(𝑦 + 𝑙), corresponds to the velocity fluctuation 𝑢′: 

𝑢′ = �̅�(𝑦) − �̅�(𝑦 + 𝑙) (2.77) 

Expanding in Taylor’s series and neglecting terms of second order and higher:  

�̅� 

𝑦 

𝑦 + 𝑙 

�̅�(𝑦) 

�̅�(𝑦 + 𝑙) 

�̅�(𝑦) 𝑢′(𝑦) 

𝑣′(𝑦) 

A 

B 

Fig. 2.6.- Concept of mixing length 
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𝑢′ = �̅�(𝑦) − (�̅�(𝑦) +
𝜕�̅�

𝜕𝑦
𝑙 + ⋯ ) (2.78) 

Thus:  

𝑢′ = −𝑙
𝜕�̅�

𝜕𝑦
 (2.79) 

Note that, for the mean velocity profile of Fig. 2.6, 𝜕�̅� 𝜕𝑦⁄ > 0, and 𝑢′ < 0 . The 

fluctuating velocity in the 𝑦 direction was positive, 𝑣′ > 0. This means that 

𝑢′𝑣′ < 0 (2.80) 

Experimental measurements show that 𝑢′and 𝑣′ are well correlated, and they are of 

the same order of magnitude:  

|𝑢′|~|𝑣′| (2.81) 

From the las two arguments (Eqs. 2.80 and 2.81), we can write:  

𝑣′~𝑙
𝜕�̅�

𝜕𝑦
 (2.82) 

Thus, the turbulent shear stress 𝜏𝑇𝑥𝑦 = −𝜌𝑢′𝑣′̅̅ ̅̅ ̅ (Eq. 2.42) can be written as:  

𝜏𝑇𝑥𝑦 = 𝜌𝑙2 (
𝜕�̅�

𝜕𝑦
)

2

 (2.83) 

From Eq. 2.83 we obtain that the eddy viscosity for this flow is given by:  

𝜀 = 𝜌𝑙2
𝜕�̅�

𝜕𝑦
 (2.84) 

We can try to solve the problem of the permanent uniform flow over an inclined plane 

using Prandtl’s expression for the turbulent shear stress (Eq. 2.83). We had obtained (Eq.  

2.67):  

𝜏𝑉𝑦𝑥 + 𝜏𝑇𝑦𝑥 = 𝜌𝑔𝑥(𝐻 − 𝑦) (2.67) 

Eqs. 2.38 and 2.83:  
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𝜇
𝜕�̅�

𝜕𝑦
+ 𝜌𝑙2 (

𝜕�̅�

𝜕𝑦
)

2

=  𝜌𝑔𝑥(𝐻 − 𝑦) (2.85) 

 

If we consider the region of the flow where turbulence dominates:  

𝑙2 (
𝜕�̅�

𝜕𝑦
)

2

=  𝑔𝑥(𝐻 − 𝑦) (2.86) 

We cannot go further than Eq. 2.86 if we do not know an expression for the mixing 

length 𝑙. At this point we need to know 𝑙. The story is not simple, and involves the 

competition between Prandtl’s research group in Gottingen and one of his former Ph.D. 

students, emigrated to the USA, Theodor von Kármán. In a paper presented in 1930 he 

assumes self-similarity of the velocity profiles and proposes (Kármán, 1930):  

𝑙 =  

𝑑�̅�
𝑑𝑦

𝑑2�̅�
𝑑𝑦2

 (2.87) 

 The proportionality coefficient  is named von Karman coefficient and must be 

determined experimentally. Von Kármán recognized that Eq. 2.87 is not valid near the 

walls, because in those regions the turbulence is damped and viscosity needs to be taken 

into account. Von Karman applies his theory to the flow between two parallel plates 

separated a distance 2𝐻, as the centre-line is a symmetry axis, the problem is equivalent 

to the flow over an inclined plane. Replacing Eq. 2.87 in Eq. 2.86:  

2
(

𝑑�̅�
𝑑𝑦

)
4

(
𝑑2�̅�
𝑑𝑦2)

2 =  𝑔𝑥(𝐻 − 𝑦) (2.88) 

Making the change of variables 𝑦′ = 𝐻 − 𝑦 and calling 𝑈′ = 𝑑�̅� 𝑑𝑦⁄ = − 𝑑�̅� 𝑑𝑦′⁄  it is 

easy to perform the integration. Without going into details, and copying the result from 

von Karman’s paper:  

𝑈′ =
𝑑�̅�

𝑑𝑦′
=

√𝑔𝑥

2

1

√𝐻 − √𝑦′
 (2.89) 

 

A word regarding the integration constant needs to be mentioned at this point. 

Following to von Karman, when we approach to the wall 𝑑�̅� 𝑑𝑦⁄  becomes very large because 

𝜇 is very small. Thus, he computes the integration constant evaluating at 𝑦 = 0 , (𝑦′ = 𝐻) 
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and imposing 𝑈′ → ∞. Eq. 2.89 is integrated again, with the boundary condition that the 

velocity is maximum (𝑈𝑚𝑎𝑥) at t 𝑦 = 𝐻 ,  (𝑦′ = 𝐻). Using 𝑢∗ = √𝑔𝐻 sin 𝜃 the velocity 

distribution is: 

�̅� = 𝑈𝑚𝑎𝑥 +
𝑢∗


[ln (1 − √1 −

𝑦

𝐻
) + √1 −

𝑦

𝐻
] (2.90) 

 

Note that Eq. 2.90 fails at 𝑦 = 0. This is correct because it is valid only in the region 

where the turbulent stresses dominate over the viscous ones. 

Further, von Karman assumes that 𝑙 should “quietly diminish to zero and the 

velocity distribution near to the wall becomes” (Eq. 25 in von Karman’s paper): 

𝜏𝑦𝑥 − 𝜇
𝜕�̅�

𝜕𝑦
= 𝜌(𝑦)2 (

𝜕�̅�

𝜕𝑦
)

2

 (2.91) 

 

Von Karman recognizes that a Japanese researcher, Wada, got the equation in 1927, 

but the article was practically unknown because it was published in Japanese in a journal 

of naval architecture. According to von Karman, Wada applied Eq. 2.91 to the whole 

channel “which made the formulas a little too complicated”. Von Karman’s results are 

already contained in Wada’s work “in an implied form”. The right hand side term of Eq. 

2.91 is the turbulent shear stress. A comparison with Eq. 2.83, gives the mixing length in 

the turbulent region near the wall (or bottom):  

𝑙 = 𝑦 (2.92) 

In order to clarify the applicability of Eq. 2.92, consider the flow on a smooth wall, 

as sketched in Fig. 2.7. The existence of a “laminar layer” in contact with a smooth wall 

was known since the 1920’s (von Karman, 1930). Due to the presence of the wall, the 

turbulent fluctuations are damped close to the wall, generating a region in which the 

viscous effects dominate over the turbulent ones (𝜏𝑉𝑖𝑗 ≪ 𝜏𝑇𝑖𝑗). Now we call that region 

viscous sublayer. Far enough of the wall, turbulence dominates over viscosity and we have 

the turbulent region, where  𝜏𝑇𝑖𝑗 ≪ 𝜏𝑉𝑖𝑗. The passage from the viscous sublayer to the 

turbulent region is not abrupt and a buffer layer is identified in which viscous and 

turbulent effects are equally important (𝜏𝑉𝑖𝑗~𝜏𝑇𝑖𝑗). Further, the turbulent region can be 

divided in an inner region where there is a local energy equilibrium, and an outer region, 

which is dominated by large eddies which transport low momentum and high turbulent 

energy from the outer part of the inner region towards the upper part of the flow 

(Bradshaw, 1972). 
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The applicability of Eq. 2.92 is near the wall, but in the turbulent region. Using 𝑙 =

𝑦  in Eq. 2.86, we have:  

(𝑦)2 (
𝜕�̅�

𝜕𝑦
)

2

=  𝑔𝑥(𝐻 − 𝑦) (2.93) 

At this point if the analysis, we should mention that according to Schlichting (1979, 

p. 587) Eq. 2.92 was Prandtl’s idea that was presented in a couple of papers in 1925 and 

1926 (Since I do not read German, I cannot verify Schlichting’s statement, but both papers 

do not contain an explicit equation similar to Eq. 2.92. It is possible that a linearly 

decreasing mixing length near the wall is mentioned in the text. Neither in von Kármán's 

article there is an explicit expression for the mixing length, but it is inferred from his Eq. 

25, as indicated before).  

Limiting the application of Eq. 2.93 to a region very near the wall, 𝑦 ≪ 𝐻, and 

recalling that 𝜏0 = 𝜌𝑔𝐻 sin 𝜃, Eq. 2.93 is simplified to:  


𝑑�̅�

𝑑𝑦
=  √

𝜏0

𝜌
 (2.94) 

 

According to Schlichting (1979, p.588) to consider that the shear stress was constant 

and equal to that existing at the bottom was a “far-reaching assumption” introduced by 

Prandtl. 

Integrating Eq. 2.94 and using the definition of shear velocity, the velocity 

distribution is:  

�̅� =  
𝑢∗


ln(𝑦) + 𝐶 (2.95) 

FLOW 

𝑦 

VISCOUS SUBLAYER 

BUFFER LAYER 

INNER 

REGION 

OUTER 

REGION 
TURBULENT 

REGION 

Fig. 2.7.- Regions of the turbulent flow over a smooth bottom. 
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 Eq. 2.95 is named the logarithmic law for the velocity distribution or, simply, 

logarithmic law. The constants and 𝐶 needs to be determined from experimental data. We 

should not be surprised to see that we got the same result as that obtained with the eddy 

viscosity. The value of 𝜀 used to obtain the logarithmic profile given by Eq. 2.76 was 

obtained using the solution resulting from the mixing length (Eq. 2.95). 

 Although there is a discussion about the universality of von Karman’s constant, it is 

usually taken as  = 0.4. A dependency on the suspended sediments concentration exists. 

Determination of the constant 𝐶 deserves a separated analysis, because it depends on the 

characteristics of the wall. 

 In addition to the mixing length given by Eq. 2.92, other have been proposed. For 

example, for the turbulent flow in a pipe of radius 𝑅, Nikuradse suggested (Schlichting, 

1979):  

𝑙

𝑅
= 0.14 − 0,08 (1 −

𝑦

𝑅
)

2

− 0,06 (1 −
𝑦

𝑅
)

4

 (2.96) 

 

 Buffer layer (region that assembles the viscous dominated layer near the wall with 

the turbulent region), van Driest proposed (Schlichting, 1979):  

𝑙 = 𝑦 [1 − exp (
1

𝐴

𝑦𝑢∗


)] , 𝐴 = 26 (2.97) 
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3.- VELOCITY DISTRIBUTIONS AND FRICTION FACTORS IN TURBULENT 

FLOWS 

 

Smooth or rough wall? 

 Before presenting the velocity distribution, it is necessary to define the type of wall 

is the solid boundary of the conduit. Any surface observed with the proper magnifier will 

look rough, as sketched in Fig. 3.1. In fluid mechanics, the definition of smooth or rough 

wall does not depend only on the size of the roughness, but also in the thickness of the 

viscous sublayer. The roughness size is commonly denoted by 𝜀 and the viscous sublayer 

thickness by 𝛿𝑉. Thus, if the roughness is large enough to avoid the presence of a viscous 

sublayer (𝜀 > 𝛿𝑉) the wall is hydraulically rough. On the contrary, if the viscous sublayer 

covers all the roughness (𝜀 < 𝛿𝑉) the wall is hydraulically smooth. When the average size 

of the roughenss is around the viscous sublayer thickness (𝜀 ~ 𝛿𝑉), the wall is in transition 

smooth-rough. To determine the limits that define the type of wall, we will follow Prandtl 

analysis to define the constant 𝐶 of the logarithmic velocity distribution (Schlichting, 1979, 

p.589). As it is observed in Fig. 2.5, there is a distance 𝑦0  at which the logarithmic profile 

is equal to cero (�̅� = 0). Taken it as a boundary condition, we obtain from Eq. 2.95:  

�̅� =  
𝑢∗


(ln(𝑦) − ln(𝑦0)) (3.1) 

 The distance 𝑦0 is of the order of magnitude of 𝛿𝑉. Using dimensional analysis, we 

can get a dimensionless parameter involving 𝑦0. The relevant variables near the bottom is 

the fluid properties (viscosity 𝜇 and density 𝜌), the shear stress acting on the wall (𝜏0). 

Thus, we can expect a functional relationship of the form 𝑦0 = 𝑓(𝜇, 𝜌, 𝜏0). The number of 

variables is 𝑛 = 4 and the number of fundamental dimensions is 𝑟 = 3 (F,L,T). Applying 

the Buckingham  theorem, we have only one dimensionless parameter (𝑛 − 𝑟 = 1), given 

by:  

 =  
𝜏0

1 2⁄
𝜌1 2⁄ 𝑦0

𝜇
 (3.2) 

Multiplying and dividing by 𝜌1 2⁄  and recalling that 𝑢∗ = √𝜏0 𝜌⁄   and  = 𝜇 𝜌⁄  we get: 

Fig. 3.1.- Roughness in a surface 
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 =  
𝑢∗𝑦0


 (3.3) 

Thus we have a functional relationship () = 0, that means that   must be a 

constant. Calling 𝛽 such a constant:  

𝑢∗𝑦0


= 𝛽 (3.4) 

Replacing 𝑦0 from Eq. 3.4 into Eq. 3.1 and dividing by the shear velocity: 

�̅�

𝑢∗
=  

1


(ln (

𝑦𝑢∗


) − ln(𝛽)) (3.5) 

It is customary to define the inner (or wall) variables:  

�̅�+ ≡
�̅�

𝑢∗
 ,  𝑦+ ≡

𝑦𝑢∗


 (3.6) 

Eq. 3.5 is re-written as:  

�̅�+ =  
1


(ln(𝑦+) − ln(𝛽)) (3.7) 

 The logarithmic profile written in dimensionless form as Eq. 3.7 will help us to define 

the viscous sublayer and buffer region thicknesses. However, before doing that, it will be 

useful to know the velocity distribution in the viscous sublayer. 

 Velocity distribution in the viscous sublayer 

The characteristic of the viscous sublayer is that the viscous stresses are much larger 

than the turbulent ones, thus we can write 𝑇𝑦𝑥 = 𝜏𝑉𝑦𝑥. In addition, as this is a thin layer, 

we can assume that the shear stress is not so different than its value on the bottom, 𝜏0. 

Thus, we can write:  

𝜇 
𝑑�̅�

𝑑𝑦
= 𝜏0 (3.8) 

Integrating and imposing the boundary condition 𝑦 = 0, �̅� = 0:  

𝜇 �̅� = 𝜏0𝑦 (3.9) 

Dividing Eq. 3.9 by 𝜌:  
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𝜇

𝜌
 �̅� =

𝜏0

𝜌
𝑦 (3.10) 

In terms of the inner variables:  

�̅�+ = 𝑦+  (3.11) 

 Thus, in the viscous sublayer the velocity varies linearly with the distance to the 

wall. 

The viscous sublayer thickness 

 At this point, we have done a lot to determine the viscous sublayer thickness, but we 

need to rely on experimental data. The utility of having the velocity distribution in terms 

of dimensionless variables is that it is possible to compare data obtained under different 

flow conditions. Some experimental data is presented in Fig. 3.2, which was taken from 

White (1991, Fig. 6.11). In addition to the experimental data, the linear velocity profile 

form the viscous sublayer (Eq. 3.11), and the logarithmic profile form the turbulent region 

(Eq.3.5) are also plotted.  

Obviously, the thickness of the viscous sublayer is defined by the distance from the 

wall where the experimental data departs from the linear profile (that appears as a curve 

in a semilogarithmic plot). This happens at 𝑦+ ≈ 5. Thus, the dimensionless viscous 

sublayer thickness, 𝛿𝑉
+ = 𝛿𝑉𝑢∗ ⁄   is taken as:  

𝛿𝑉
+ = 5 (3.12) 

The experimental data join the line defined by the logarithmic distribution around 

𝑦+ ≈ 70. That means that for 𝑦+ > 70 turbulence dominates over viscous effects. Finally 

the buffer layer, or region where the viscous effects are as important as the turbulent ones 

is comprised in 5 < 𝑦+ < 70. Often, the buffer region is neglected and 𝛿𝑉
+~ 11 is taken. 

Below that height the motion is considered laminar and above, fully turbulent. 

For the flow in a smooth conduit, the three regions mentioned before are present. 

We are still talking about smooth walls but we have not given a precise definition regarding 

when a wall can be considered smooth. Following Prandtl (Schlichting, 1979) and von 

Karman (1930), a wall is hydraulically smooth when the roughness is completely contained 

within the viscous sublayer. A wall is hydraulically rough when the roughness size is large 
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enough to preclude the existence of a region. As the roughness is much greater than the 

viscous sublayer, the resistance comes mainly from the drag of the protruding elements on 

the surface. The idea of both kind of walls is sketched in Fig. 3.3. There is a transition from 

the hydraulically smooth to the rough surface, in which both viscous stress and drag are 

important in the generation of flow resistance. This originates a wall in the transition 

smooth-rough regime. 

 A question regarding how the roughness size is determined. It is not measured 

directly. Actually it is an equivalent roughness. The size 𝜀 is the result of a distribution of 

sizes that gives the same resistance to the flow than that obtained by Nikuradse in 

experiments with uniform sand grains of size 𝑘𝑆 glued to the inner wall of pipes, as shown 

in Fig. 3.4. Although both kind of roughness have the same effects for the hydraulically 

smooth and rough walls, they present a difference in the transition. For Nikuradse’s 

uniform grains, there is a sudden passage from smooth to rough wall. In the case of 𝜀, there 

is a gentle transition from smooth to rough due to the several sizes involved in the 

distribution roughness heights. The value 𝜀 corresponds to that obtained for commercial 

pipes. 

�̅�+ 

𝒚+ 

LOGARITHMIC PROFILE 

LINEAR DISTRIBUTION 

Fig. 3.2.- Experimental data and velocity distributions for the viscous 

sublayer  (Eq. 3.11) and turbulent region (Eq. 3.7). 
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Based on the limits of the different regions indicated before, the hydrodynamic type 

of wall is defined depending on which of them the roughness is contained. It is expressed 

in terms of the roughness size made dimensionless with the inner variables:  

𝑘𝑆
+ =

𝑘𝑆𝑢∗


 (3.13) 

Due to the arbitrariness in the definition of the region boundaries, the values 

assigned to 𝑘𝑆
+ to define the type of wall vary slightly among different authors, as shown in 

Table 3.1,although those assigned by Prandtl are the most used in practice. 

 

 

𝛿𝑉  

𝜀 

𝛿𝑉  𝛿𝑉  

𝛿𝑉  

a) SMOOTH WALL 

b) ROUGH WALL 

Fig. 3.3.- Definition of hydraulically smooth and rough surfaces. 

a) On a smooth wall, the viscous sublayer cover completely the 

roughness of the wall. The flow in the turbulent region is not 

influenced by the size of the roughness and the flow resistance is 

due to the viscous shear acting in the viscous sublayer. 

b) The viscous sublayer is completely destroyed by the roughness 

elements and the flow resistance is originated by the drag exerted 

by them. 

𝑘𝑆 

Fig. 3.4.- Nikuradse’s roughness. Sand grains were glued to the wall of the 

pipes. 
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Table 3.1.- DIMENSIONLESS ROUGHNESS SIZE AND HYDRAULIC TYPE OF WALL 

HYDRAULIC TYPE OF WALL 
PRANDTL 

(Schlichting, 1979) 

WHITE 

(White, 1991) 

SMOOTH 𝑘𝑆
+ < 5 𝑘𝑆

+ < 4 

TRANSITION SMOOTH -ROUGH 5 ≤ 𝑘𝑆
+ ≤ 70 4 ≤ 𝑘𝑆

+ ≤ 60 

ROUGH 𝑘𝑆
+ > 70 𝑘𝑆

+ > 60 

 

VELOCITY DISTRIBUTION IN THE FULLY TURBULENT REGION (𝒚+ > 𝟕𝟎) 

As it was indicated, the velocity distribution in the fully turbulent region is directly 

related to the flow resistance mechanism, which depends on the type of wall. Thus, the 

distance 𝑦0 at which the boundary condition is evaluated should consider it. Eq. 3.1 can be 

written as:  

�̅�

𝑢∗
=  

1


ln (

𝑦

𝑦0
) (3.14) 

 The type of wall should be taken into account in the value of 𝑦0. 

 

Hydraulically smooth wall (𝒌𝑺
+ < 𝟓)  

In this case, we already found that 𝑦0~  𝑢∗⁄  (Eq. 3.4) and Eq. 3.7 is valid, which 

usually is written as:  

�̅�+ =  
1


ln(𝑦+) + 𝐵 (3.15) 

  and 𝐵 are determined from experimental data, such as those presented in Fig. 3.2, 

resulting  = 0.4 and 𝐵 = 5.5 (Nikuradse, 1933). 

 

Hydraulically rough wall (𝒌𝑺
+ > 𝟕𝟎) 

The flow resistance mechanism is due to the drag generated by the grains large 

enough to preclude the existence of a viscous sublayer. In this case, it is relevant the size 

of the roughness, so 𝑦0~ 𝑘𝑆 and Eq. 3.14 becomes:  

�̅�

𝑢∗
=  

1


ln (

𝑦

𝑘𝑆
) + 𝐶 

 
(3.16) 
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 𝐶 is determined from experimental measurements like that presented in Fig. 3.5, 

which correspond to the data taken by Nikuradse (1933), and takes the value 8.5. 

Wall in smooth-rough transition (𝟓 ≤ 𝒌𝑺
+ ≤ 𝟕𝟎) 

 I this case, the flow resistance is the result of both viscous and drag effects. Thus, a 

functional relationship 𝑦0 = 𝑓(𝜇, 𝜌, 𝜏0, 𝑘𝑆) should exist. From the Buckingam  theorem we 

obtain:  

1 =  
𝑦0

𝑘𝑆
, 2 =  

𝑢∗𝑘𝑆


 (3.17) 

The dimensionless relation between both dimensionless parameters is written as:  

 (
𝑦0

𝑘𝑆
, 𝑘𝑆

+) =  0 (3.18) 

Which is the same that:   

Fig. 3.5.- Velocity distribution in a hydraulically rough pipe. Note that in 

the horizontal axis is 𝐥𝐨𝐠𝟏𝟎 (
𝒚

𝒌𝑺
)  (Nikuradse, 1933). 
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𝑦0

𝑘𝑆
= 1(𝑘𝑆

+) (3.19) 

Thus, 𝑦0 is given by:  

𝑦0 = 𝑘𝑆1(𝑘𝑆
+) (3.20) 

Replacing 𝑦0 from Eq. 3.20 into Eq. 3.14:  

�̅�

𝑢∗
=  

1


ln (

𝑦

𝑘𝑆
) + 𝐴(𝑘𝑆

+) (3.21) 

 The function  𝐴(𝑘𝑆
+) is determined computing the deviation shown by the 

experimental data corresponding to the smooth-rough transition with respect to the 

velocity distribution for the rough wall (Eq. 3.16), resulting the graphic relationship shown 

in Fig. 3.6 (Nikuradse, 1933). 

 

 

HYDRAULICALLY SMOOTH WALL (𝒌𝑺
+ < 𝟓). Velocity distribution in the buffer 

layer (𝟓 ≤ 𝒚+ ≤ 𝟕𝟎) 

𝐴(𝑘𝑆
+) 

Fig. 3.6.- Function 𝑨(𝒌𝑺
+) of the velocity distribution in fully turbulent 

region of a pipe with wall in the transition smooth-rough regime. Note 

that in the horizontal axis is 𝐥𝐨𝐠𝟏𝟎(𝒌𝑺
+) (Nikuradse, 1933). 
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 In hydraulically smooth walls, a buffer layer matching the viscous sublayer with the 

fully turbulent region exists. Spalding (1961) gives two expressions for the velocity profile 

in the buffer layer. The difference between them is the presence of a term raised to the 

fourth power. However, the equation without this term adjust very well to the experimental 

data, as shown by White (1991, Fig. 6.11). The equation is:  

𝑦+ = 𝑢+ + 𝑒−𝐵 [𝑒𝑢+
− 1 − 𝑢+ −

(𝑢+)2

2
−

(𝑢+)3

6
] (3.22) 

Note that Eq. 3.22 is not explicit in 𝑢+, with  = 0.4 and 𝐵 = 5.5. The range of validity 

of this equation extends further than the buffer layer, spanning 0 ≤ 𝑦+ < 300. 

 The different velocity profiles arising in the turbulent flow are summarized in Table 

3.2. 

 

Table 3.2.- SUMMARY OF VELOCITY DISTRIBUTIONS IN TURBULENT FLOWS 

TYPE OF WALL VELOCITY DISTRIBUTION 

HYDRAULICALLY SMOOTH 

𝑘𝑆
+ < 5 

Viscous sublayer, 𝑦+ < 5 

𝑢+ = 𝑦+ 

Buffer layer, 5 ≤ 𝑦+ ≤ 70 

Eq. 3.22 

Fully turbulent region, 𝑦+ > 70 

𝑢+ =
1


ln(𝑦+) + 5.5 

TRANSITION SMOOTH-ROUGH 

5 ≤ 𝑘𝑆
+ ≤ 70 

𝑢+ =
1


ln (

𝑦

𝑘𝑆
) + 𝐴(𝑘𝑆

+) 

𝐴(𝑘𝑆
+) from Fig. 3.6 

HYDRAULICALLY ROUGH 

𝑘𝑆
+ > 70 

𝑢+ =
1


ln (

𝑦

𝑘𝑆
) + 8.5 
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FRICTION COEFFICIENT OF PIPES WITH TURBULENT FLOWS 

The friction coefficient 𝑓, necessary to compute the frictional energy loss (Eq. 47), 

can easily be computed from the velocity distributions presented in the previous sections. 

Eq. 68 gives the relation between 𝑓  and the cross-sectional mean velocity, 𝑈:  

𝑢∗

𝑈
= √

𝑓

8
 (68) 

 The velocity distributions have the form �̅� 𝑢∗⁄  as a function of the distance from the 

wall. It looks evident that, integrating the velocity distribution across the flow section will 

allows to obtain 𝑈 𝑢∗⁄ , hence the friction factor 𝑓. The analysis that follows will consider 

cylindrical pipes because in this case exists an extensive set of data that permits to confirm 

the validity of the expressions obtained. The results can be generalized to other geometries.  

 

Friction factor for turbulent flow with hydraulically smooth walls 

The velocity distribution in the fully turbulent region is given by Eq. 3.15:  

�̅�+ =  
1


ln(𝑦+) + 𝐵 (3.15) 

The cross-sectional mean velocity is computed from  

𝑈 =  
1

𝐴
∫ �̅�

𝐴

 𝑑𝐴 (3.23) 

For a pipe with inner diameter 𝐷, 𝐴 = 𝜋𝐷2 4⁄ . The distance from the wall (𝑦) is 

related to the radial distance from the axis of the pipe (𝑟) trough 𝑦 + 𝑟 = 𝐷 2⁄ . The element 

of surface is 𝑑𝐴 = 2𝜋𝑟𝑑𝑟. In order to simplify the computations, we will neglect the viscous 

sublayer and buffer regions, i.e., we will assume that Eq. 3.15 is valid in all the flow 

domain. Thus, from Eq.s 3.15 and 3.23:  

𝑈 =  
4

𝜋𝐷2
∫ (

𝑢∗


ln ((

𝐷

2
− 𝑟)

𝑢∗


) + 𝑢∗𝐵)

𝐷
2

𝑜

 2𝜋𝑟𝑑𝑟 (3.24) 

 

𝑈 =  
8

𝐷2

𝑢∗


∫ (ln (

𝐷

2
− 𝑟) + ln (

𝑢∗


) + 𝐵)

𝐷
2

𝑜

 𝑟𝑑𝑟 (3.25) 
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𝑈 =  
8

𝐷2

𝑢∗


[∫ ln (

𝐷

2
− 𝑟) 𝑟𝑑𝑟

𝐷
2

𝑜

 + (ln (
𝑢∗


) + 𝐵) ∫ 𝑟𝑑𝑟

𝐷
2

𝑜

] (3.26) 

 

𝑈 =  
8

𝐷2

𝑢∗


[∫ ln (

𝐷

2
− 𝑟) 𝑟𝑑𝑟

𝐷
2

𝑜

 + (ln (
𝑢∗


) + 𝐵)

1

2
(

𝐷

2
)

2

] (3.27) 

 

A comment regarding the integral in Eq. 3.27. It will give a term containing 

(𝐷 − 2𝑟)ln(𝐷 − 2𝑟)that when evaluated at 𝑟 = 𝐷 2⁄  gives 0 × (−∞). To overcome this 

problem, l’Hôpital rule must be applied. Grouping the sum of logarithms in the logarithm 

of the product, the following result is obtained: 

𝑈 =
𝑢∗


[(ln (

1

2

𝐷𝑢∗


) −

3

2
) + 𝐵]  (3.28) 

We can rearrange Eq. 3.28 to give the structure of Eq. 68:  

𝑢∗

𝑈
= √

𝑓

8
=

1

1


(ln (
1
2

𝐷𝑢∗


) −

3
2) + 𝐵

  (3.29) 

 Generally, the flow mean velocity 𝑈 = 𝑄/𝐴 is known, and not the shear velocity, and 

it is convenient to change the argument of the logarithm in Eq. 3.29 multiplying and diving 

it by 𝑈:  

 
𝐷𝑢∗


=

𝐷𝑈



𝑢∗

𝑈
= 𝑅𝑒√

𝑓

8
 

(3.30) 

 

 Replacing Eq. 3.30 in Eq. 3.29 and working with its reciprocal:  

 
1

√𝑓
=

1

√8
[ln(𝑅𝑒√𝑓) − ln(√32) −

3

2
+ 𝐵] (3.31) 

Using the values  = 0.4 and 𝐵 = 5.5:  

 
1

√𝑓
= 0.884ln(𝑅𝑒√𝑓) − 0.913 (3.32) 
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Eq. 3.32 is usually expressed in terms of the decimal logarithm:  

 
1

√𝑓
= 2.035log(𝑅𝑒√𝑓) − 0.913 (3.33) 

Eq. 3.33 was obtained by Prandtl in 1935 (White, 1991). As the buffer region and 

viscous sublayer were neglected in its deduction, the numerical constants that appear in it 

were re-computed in order to fit the experimental data taken by Nikuradse (1933), 

resulting:  

 
1

√𝑓
= 2log(𝑅𝑒√𝑓) − 0.8 (3.34) 

This is Prandtl’s universal law of friction for smooth pipes (Schlichting, 1979) and it 

is not have limitations regarding the Reynolds number (within the turbulent regime). 

Computation of 𝑓 from Eq. 3.34 must be done graphically or numerically, usually by 

iteration. A simpler equation is the empirical relationship presented by Blasius in 1913, 

but limited to 3 × 103 ≤ 𝑅𝑒 ≤ 105 (Blasius, 1913, p. 12) 

𝑓 =
0.3164

𝑅𝑒1 4⁄
 (3.35) 

Friction factor for turbulent flow with hydraulically rough walls 

The friction factor for turbulent flows with rough walls is obtained from the velocity 

distribution given by Eq. 3.16.  

�̅�

𝑢∗
=  

1


ln (

𝑦

𝑘𝑆
) + 𝐶 

 
(3.16) 

Assuming eq. 3.16 valid in all the cross-section, computing the average velocity 𝑈 , 

rearranging the final result to form √𝑓 = √8 𝑢∗ 𝑈⁄ , and using  = 0.4 and 𝐶 = 8.5, the 

following expression is obtained:  

1

√𝑓
=  0.942 ln (

𝐷

2𝑘𝑆
) + 1.68 

 
(3.36) 

In terms of the decimal logarithm:  

1

√𝑓
=  2.2 log (

𝐷

2𝑘𝑆
) + 1.68 

 
(3.36) 

The numerical constants are adjusted to the experimental data, resulting:  
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1

√𝑓
=  2 log (

𝐷

2𝑘𝑆
) + 1.74 

 
(3.37) 

Frequently, the additive constant 1.74 is introduced into the logarithm argument, 

giving:  

1

√𝑓
=  2 log (3.7

𝐷

𝑘𝑆
) 

 
(3.38) 

  

Friction factor for turbulent flow with walls in transition smooth-rough  

An analytical derivation of a relationship for the friction factor for the turbulent flow 

with walls in the transition smooth-rough regime is not possible because we do not have a 

simple analytical equation for �̅� 𝑢∗⁄  . In this case, the velocity profile is given by Eq. 3.21, 

with the additive constant depending of 𝑘𝑆
+, given in Fig. 3.6.  In order to determine a 

relation for 𝑓, we will analyse the deviation of the experimental data from the friction factor 

associated to a hydraulically rough wall. In order to avoid confusion with the friction 

factors, we will use the sub-indexes 𝑆 to denote the smooth wall and 𝑅 for the rough. We 

can write for smooth wall friction coefficient (Eq. 3.34):  

2log(𝑅𝑒√𝑓𝑆) −  
1

√𝑓𝑆

= 0.8 (3.39) 

 

2log (
𝑈𝐷


√8

𝑢∗

𝑈
) − 

1

√𝑓𝑆

= 0.8 (3.40) 

 

2log (
𝑢∗𝐷


√8) −  

1

√𝑓𝑆

= 0.8 (3.41) 

 

2log (
𝑢∗𝑘𝑆



𝐷

𝑘𝑆
√8) −  

1

√𝑓𝑆

= 0.8 (3.42) 

 

2log (
𝐷

𝑘𝑆
) + 2log(𝑘𝑆

+) + 2log(√8) − 
1

√𝑓𝑆

= 0.8 (3.43) 
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2log (3.7
𝐷

𝑘𝑆
) − 2log(3.7) + 2log(𝑘𝑆

+) + 2log(√8) −  
1

√𝑓𝑆

= 0.8 (3.44) 

 

We identify the first term of Eq. 3.44 as 1 √𝑓𝑅⁄  (Eq. 3.38):  

1

√𝑓𝑅

− 2log(3.7) + 2log(𝑘𝑆
+) + 2log(√8) −  

1

√𝑓𝑆

= 0.8 (3.45) 

 

1

√𝑓𝑅

−  
1

√𝑓𝑆

= 0.8 + 2log(3.7) − 2log(√8) − 2log(𝑘𝑆
+) (3.46) 

 

1

√𝑓𝑅

−  
1

√𝑓𝑆

= 1.033 − 2log(𝑘𝑆
+) (3.47) 

Eq. 3.47 is the deviation (in terms of 1 √𝑓⁄  ) of the friction factor for smooth walls 

from the friction factor for rough walls. Now, we will define the deviation of the friction 

factor for any type of wall from that associated to the rough surface as:  

𝑀 = 2log (3.7
𝐷

𝑘𝑆
) −  

1

√𝑓
 (3.48) 

As Eq. 3.48 is valid for any type of wall, 𝑀 should be function of 𝑘𝑆
+. Using the 

experimental data presented by Nikuradse (1933) is possible to know 𝑀(𝑘𝑆
+). In effect, with 

the data is possible to generate the Table. 3.3. The first four columns contains Nikuradse’s 

data and the fifth is computed using Eq. 3.48.  

 

Table 3.3.- ORGANIZATION OF NIKURADSE’S DATA TO GENERATE THE 

FUNCTION 𝑀(𝑘𝑆
+) 

𝑅𝑒 
𝐷

𝑘𝑆
 𝑓 𝑘𝑆

+ =
𝑘𝑆𝑢∗


 𝑀 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 
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The relation between 𝑀 and 𝑘𝑆
+ is presented in Fig. 3.7, taken from the article by 

Colebrook and White (1937) and corresponds to line labelled “Nikuradse sanded”. The 

straight line labelled “smooth law” is Eq. 3.47. Obviously, for rough walls 𝑀 = 0 (“rough 

law” in the figure). 

  The objective of the article by Colebrook and White (1937) was “to determine how 

the nature of the roughness influenced the transition”. To accomplish that goal, sand of 

different sizes and following some particular arrangements were glued to the pipe. But 

they also added information of commercial pipes reported by other authors (Freeman, 

quoted by Mills, 1923; and Heywood, 1924). The commercial pipes generate the curve 

labelled as “Galvanised and new wrought iron” in Fig. 3.7. The different behaviour among 

the measurements carried out in commercial pipes and those obtained by Nikuradse is 

result of the non-uniformity of the roughness size in the commercial pipes. In this case, 

protuberances larger than the average disturb and destroy the viscous sublayer before that 

the rest of the protuberances. This is a gradual process that makes an earlier and gradual 

separation of the 𝑀 curve from the smooth case when compared with pipes of uniform 

roughness. 

As it was indicated before, it is customary to denote by 𝜀 the equivalent roughness 

that arise in pipes with non-uniform size of protuberances. A dimensionless equivalent 

roughness is defines as:  

𝑀 

𝑘𝑆
+ 

Fig. 3.7.- Deviation of 𝟏 √𝒇⁄   from the rough wall. The function 𝑴 

covers all type of walls. 
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𝜀+ ≡
𝜀𝑢∗


 (3.49) 

Thus, for commercial pipes, the experimental relationship between 𝑀 and 𝜀+ is found 

to be:  

𝑀 = 2 log (1 +
3.29

𝜀+
) (3.50) 

It is easy to verify that Eq. 3.50 does not have limitations regarding the type of wall, 

covering all of them. For smooth walls, 𝜀+ is very small, and 3.29 𝜀+⁄ ≫ 1, and 𝑀 ≈

2 log(3.29 𝜀+⁄ ) = 2 log(3.29) − 2 log(𝜀+), that is to say:  

𝑀 = 1.033 − 2log(𝜀+) (3.51) 

Eq. 3.51 is in agreement with Eq. 3.47, the deviation for smooth surfaces. In the 

same way, for hydraulically rough walls, 𝜀+ is large, resulting 3.29 𝜀+⁄ ≪ 1, and 𝑀 ≈

2log(1) = 0, i.e., there is not deviation from the friction factor for rough surface. 

Thus, it is possible to determine an expression for the friction factor for turbulent 

flows, valid for all type of walls. In effect, replacing Eq. 3.50 into eq. 3.48:  

2 log (1 +
3.29

𝜀+
) = 2 log (3.7

𝐷

𝜀
) −

1

√𝑓
 (3.52) 

But  

𝜀+ =
𝜀𝑢∗


=

𝜀

𝐷

𝐷𝑢∗


=

𝜀

𝐷

𝐷𝑈



𝑢∗

𝑈
=

𝜀

𝐷
𝑅𝑒√

𝑓

8
 

(3.53) 

Replacing Eq. 3.53 in Eq. 3.52 results: 

−
1

√𝑓
= 2 log (1 +

3.29√8

𝑅𝑒√𝑓

𝐷

𝜀
) − 2 log (3.7

𝐷

𝜀
) (3.54) 

 

−
1

√𝑓
= 2 log [(1 +

3.29√8

𝑅𝑒√𝑓

𝐷

𝜀
)

𝜀

3.7𝐷
] (3.55) 
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−
1

√𝑓
= 2 log (

𝜀

3.7𝐷
+

3.29√8

3.7

1

𝑅𝑒√𝑓
) (3.56) 

Finally, the friction factor for turbulent flows is pipes is given by:  

1

√𝑓
= −2 log (

𝜀

3.7𝐷
+

2.51

𝑅𝑒√𝑓
) (3.57) 

 

 Eq. 3.57 was presented in an article written by Colebrook in 1939. Although he is 

the only author of the article, Colebrook recognizes White's contribution in the development 

of the formula, which is known as the Colebrook-White equation. Eq. 3.57 is not explicit in 

𝑓, therefore computation must be done iteratively, which is not a problem with the 

calculators existing nowadays. However, in the 1940s, it resulted a cumbersome task when 

it had to be computed manually o with slide rules. Thus, the graphic relationship shown in 

Fig. 3.8 was presented by Rouse (1943). The graph contains a set of curves with the relative 

roughness (𝜀 𝐷⁄ ) as parameter. Depending on the known variables, the diagram can be 

accessed from the lower horizontal axis, which contains 𝑅𝑒√𝑓. Considering the Darcy-

Weisbach equation (Eq.47), 𝑓 = 2𝐽𝑔𝐷 𝑈2⁄ , the term 𝑅𝑒√𝑓 can be written as: 𝑅𝑒√𝑓 =

𝑈𝐷 ⁄ √2𝐽𝑔𝐷 𝑈2⁄ = √2𝐽𝑔 𝐷3 2⁄ ⁄ , which is independent of the velocity. Thus, if the viscosity, 

gradient of the energy loss ( 𝐽), pipe diameter and roughness are known the velocity (and 

hence the discharge) are determined directly. On the other hand, if the velocity and pipe 

characteristics are known and the friction factor has to be computed, the Reynolds number 

can be determined and the graph is accessed from the upper horizontal axis until reach the 

line corresponding to the relative roughness and 𝑓 (or 1 √𝑓⁄ ) is read in the vertical axis. 

Note that 𝑅𝑒 follow curved lines. (In Rouse’s notation, 𝑆 = 𝐽).  

However, the most known graphic relationship is that due to Moody (1944), who only 

differs from Rouse’s in the principal axis. Moody used the Reynolds number in the lower 

horizontal axis. Thus, we have to follow a vertical straight line for a given 𝑅𝑒 (and not 

curved lines as in Rouse diagram). Note that Moody indicates that the units of velocity, 

diameter and kinematic viscosity must be ft/s, ft and ft2/s, respectively. Obviously, this is 

not necessary. As 𝑅𝑒 is dimensionless, the only requirement is that the units must be in 

any coherent system of units. 

Note that we have presented relationships for the friction factor for two flow regimes: 

laminar (𝑓 = 64 𝑅𝑒⁄  ) and turbulent (Eq. 3.57). We have not presented a relation for the 

transition laminar-turbulent regime because it is very uncertain and small variations of 

𝑅𝑒 mean large variations in 𝑓. In general, flows in the transition regime are not usual in 

civil or environmental engineering.  
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A large amount of equations for 𝑓 in the turbulent regime can be found in the 

literature. Many of them are experimental relationships determined for specific pipes and 

materials. Also, there a many relationships that are fittings to the Moody diagram 

(Eq.3.57), with only goal to have explicit expressions for 𝑓. Some of them are the following 

(Beluco and Camano, 2016): 

Haaland:  

1

√𝑓
= −1.8 log [(

𝜀

3.7𝐷
)

1.1

+
6.9

𝑅𝑒
] (3.58) 

Barr:  

1

√𝑓
= −2 log [

𝜀

3.7𝐷
+

5.15

𝑅𝑒0.892
] (3.59) 

Eck:  

Fig. 3.8.- Rouse diagram (Rouse, 1943) 



  

 

 

 

:: 84 :: 
 

1

√𝑓
= −2 log [

𝜀

3.715𝐷
+

15

𝑅𝑒
] (3.60) 

As the above equations (an others similar) are approximations to Eq. 3.57, the 

friction factor computed with them will have an error. 

Finally in Table 3.4, typical values of the roughness size for some materials are 

presented. 

Table 3.4.- TYPICAL VALUES OF THE ROUGHNESS SIZE 

MATERIAL 𝜀  (mm) 

Riveted steel 0.92 - 9.2 

Concrete 0.31 - 3.1 

Ductile iron 2.6 

Wood stave 0.09 - 0.18 

Galvanized iron 0,15 

Cast iron – asphalt dipped 0,12 

Cast iron uncoated 0,25 

Carbon steel or wrought iron 0,045 

Stainless steel 0,045 

Fiberglass 0,005 

Drawn tubing – glass, brass, plastic 0,0015 

Copper 0,0015 

Aluminium 0,0015 

PVC 0,0015 

Red brass 0,0015 
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Fig. 3.9.- Moody’s digram (Moody, 1944) 



  

 

 

 

:: 86 :: 
 

RESISTANCE LAWS IN OPEN CHANNEL FLOWS 

The application of relationships like Eq. 3.57 has been extended to the flow in open 

channels, adjusting the numerical coefficients with ad hoc experimental data (Yen, 2002), 

and replacing the pipe diameter 𝐷 by the hydraulics radius 𝑅𝐻 = 𝐴 ⁄  , where 𝐴 is the flow 

area and  is the wetted perimeter. Eq. 3.57 is transformed into:  

1

√𝑓
= −𝐾1 log (

𝑘𝑆

𝐾2𝑅
+

𝐾3

4𝑅𝑒𝑅𝐻√𝑓
) (3.61) 

 

In Eq. 3.61, 𝑅𝑒𝑅𝐻 is the Reynolds number based on the hydraulic radius, i.e., 𝑅𝑒𝑅𝐻 = 𝑈𝑅𝐻 ⁄ . 

𝐾1, 𝐾2 and 𝐾3 are coefficients fitted by different authors. Yen (2002) presents the summary 

shown in Table 3.5. 

 

Table 3.5.- COEFFICIENTS OF EQ. 3.57 ACCORDING TO DIFFERENT AUTHORS 

(YEN, 2002) 

CHANNEL 

GEOMETRY 
REFERENCE 𝐾1 𝐾2 𝐾3 REMARKS 

Full circular pipe Colebrook (1939) 2.0 14.83 2.52   

Wide channel Keulegan (1938) 2.03 11.09 3.41  

Wide channel Rouse (1946, p. 214) 2.03 10.95 1.70  

Wide channel Thijsse (1949) 2.03 12.2 3.033  

Wide channel 
Sayre and Albertson 

(1961) 
2.14 8.888 7.17  

Wide channel Henderson (1966) 2.0 12.0 2.5  

Wide channel Graf (1971, p. 305) 2.0 12.9 2.77  

Wide channel Reinius (1961) 2.0 12.4 3.4  

Rectangular Reinius (1961) 2.0 14.4 2.9 Width/depth=4 

Rectangular Reinius (1961) 2.0 14.8 2.8 Width/depth=2 

Rectangular Zegzhda (1938) 2.0 11.55 0 Dense sand 
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When Eq. 3.61 is applied to natural channels (with fixed boundaries), it is also necessary 

to define the roughness, 𝑘𝑆. The bed of natural channels, when it is formed by granular 

non-cohesive sediments, usually contains a wide range of particle sizes. The matter of what 

is the appropriate size to represent 𝑘𝑆 depends on the researcher, and usually is expressed 

in terms of the diameter 𝑑𝑋 of the size distribution (𝑑𝑋 is the size of the particle under 

which it is found the 𝑋% of the sediment):  

𝑘𝑆 = 𝛼𝑆𝑑𝑋 (3.62) 

 Yen (2002) gives a list of the diameter 𝑑𝑋 used by different authors and the 

corresponding value of the coefficient 𝛼𝑆, which is reproduced in Table 3.6. 

Table 3.6.-  EQUIVALENT SIZE ROUGHNESS ACCORDING TO DIFFERENT 

AUTHORS (YEN, 2002) 

RESEARCHER CHARACTERISTIC SIZE 𝛼𝑠 

Ackers and White (1973) 𝑑35 1.23 

Strickler (1923) 𝑑50 3.3 

Keulegan (1938) 𝑑50 1 

Meyer-Peter and Muller (1948) 𝑑50 1 

Thompson and Campbell (1979) 𝑑50 2.0 

Hammond et al. (1984) 𝑑50 6.6 

Einstein and Barbarossa (1952) 𝑑65 1 

Irmay (1949) 𝑑65 1.5 

Engelund and Hansen (1967) 𝑑65 2.0 

Lane and Carlson (1953) 𝑑75 3.2 

Gladki (1979) 𝑑80 2.5 

Leopold et al. (1964) 𝑑84 3.9 

Limerinos (1970) 𝑑84 2.8 

Mahmood (1971) 𝑑84 5.1 

Hey (1979), Bray (1979) 𝑑84 3.5 

Ikeda (1983) 𝑑84 1.5 
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Colosimo et al. (1986) 𝑑84 3 - 6 

Whiting and Dietrich (1990) 𝑑84 2.95 

Simons and Richardson (1966) 𝑑85 1 

Kamphuis (1974) 𝑑90 2.0 

van Rijn (1982) 𝑑90 3.0 
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