CONTROL 1

- (1) (a) (0.75 ptos) Sea H un grafo en h vertices, y sea H+H el grafo que consiste en dos cópias disjuntas de H. Muestre que $ex(n, H+H) \le ex(n, H) + nh$.
 - (b) (0.75 ptso) Aplicando resultados vistos en clase, determine ex(n, P) asintóticamente, donde P es el grafo de Petersen.
 - (c) (0.75 ptos) Sean H, G grafos tal que H es conexo. Demuestre que $R(H,G) \ge (|V(H)|-1)(\chi(G)-1)+1$.
 - (d) (0.75 ptos) Muestre que $ex(n, T^+) = \lfloor \frac{n^2}{4} \rfloor$, donde T^+ es el grafo en vertices a, b, c, d y aristas ab, bc, ca, cd.
- (2) (a) (1 pto) Demuestre la existencia de una 2-coloración de K_n tal que el número total de copias monocromáticas de K_4 en esta coloración es a lo más $\binom{n}{4} \cdot 2^{-5}$.
 - (b) (2 ptos) Sean $s,t\geq 2$. Demuestre que existe una constante c>0 tal que $\text{ex}(n,K_{s,t})\geq cn^{2-\frac{(s+t-2)}{(st-1)}}.$
- (3) (a) (1.5 ptos) Sea $r \in \mathbb{N}$ y sea K_{\aleph_0} el grafo completo en un número infinito contable de vertices. Muestre que cada coloración de las aristas de K_{\aleph_0} con r colores induce una copia monocromática de K_{\aleph_0} .
 - (b) (1.5 ptos) Deduzca que cada secuencia $(a_i)_{i\in\mathbb{N}}$ contiene una de las siguientes: una subsecuencia constante, una subsecuencia estrictamente creciente o una subsecuencia estrictamente decreciente.

Bonus (1.5 ptos): Demuestre que la conjetura de Tree-packing de Gyárfás y Lehel es cierta si todos menos a lo más uno de los árboles T_i son estrellas.