MA1101-8 Introducción al álgebra

Profesor: Maya Stein Auxiliar: Juan d'Etigny S.

Auxiliar 13

17 de agosto de 2018

- **P1.-** a) Sea $z = \frac{5}{3 + \cos(\theta) + i \sin(\theta)}$. Calcule $\mathbb{R}e(z)$ y también $\mathbb{I}m(z)$
 - b) Escriba de forma cartesiana y polar el complejo

$$\frac{z_1(\frac{1}{2} + \frac{i}{2})}{z_2(\frac{-1}{\sqrt{2}} + \frac{i}{\sqrt{2}})}$$

Donde tenemos que $|z_1| = 3$, $|z_2| = 2$, $arg(z_1) = \pi/4$, $arg(z_2) = \pi/2$

- **P2.-** a) Sea $z \in \mathbb{C}$. Demuestre que $|z i| = |z + i| \iff z \in \mathbb{R}$
 - b) Sea $\epsilon \in \mathbb{R} \setminus \{0\}$. Muestre que todas las soluciones de $|z| = |z \epsilon|$ pertenecen a una misma recta en el plano complejo.
 - c) Demuestre que si $z \in \mathbb{C}$ cumple |z| < 1, entonces $\mathbb{R}e\left(\frac{1+z}{1-z}\right) > 0$
- **P3.-** Sea $\alpha \in \mathbb{R}$, considere los números reales $A = \sum_{k=0}^{n} \binom{n}{k} cos(k\alpha)$ y $B = \sum_{k=0}^{n} \binom{n}{k} sen(k\alpha)$.
 - a) Demuestre que $A + iB = (1 + cos(\alpha) + isen(\alpha))^n$
 - b) Escriba A+iBen su forma polar y deduzca que

$$A = 2^{n} cos^{n}(\frac{\alpha}{2}) cos(\frac{n\alpha}{2}) \quad \land \quad B = 2^{n} cos^{n}(\frac{\alpha}{2}) sen(\frac{n\alpha}{2})$$

P4.- a) Pruebe que $\forall n \in \mathbb{N}$, con $\alpha \in \mathbb{R}$, se tiene que

$$(1 + i\tan(\alpha))^n + (1 - i\tan(\alpha))^n = 2\sec^n(\alpha)\cos(n\alpha)$$

b) Si z_1 y z_2 son las soluciones de la ecuación $z^2-2z+2=0$, demuestre (sin usar inducción) que $\forall n \in \mathbb{N}, \ \forall \theta \in \mathbb{R}; \ \theta \neq k\pi, \ k \in \mathbb{Z}$:

$$\frac{(\cot(\theta) + z_1 - 1)^n - (\cot(\theta) + z_2 - 1)^n}{z_1 - z_2} = \operatorname{sen}(n\theta)(\operatorname{cosec}(\theta))^n$$

¿Cómo se relaciona esto a lo que daría si se cambia $tan(\alpha)$ por $cot(\alpha)$ en la parte anterior?

P5.- Propuesto: Se desea probar que

$$\sum_{k=0}^{n} \cos(2k\theta) = \frac{\cos(n\theta) \sin(n\theta + \theta)}{\sin(\theta)}$$

- a) Para $r \in \mathbb{C} \setminus \{0,1\}$, demuestre que $\sum_{k=0}^n r^{2k} = \frac{r^n(r^{n+1}-r^{-n-1})}{r-r^{-1}}$
- b) Calcule $S = \sum_{k=0}^{n} e^{i2k\theta}$ en su forma cartesiana, y concluya la igualdad que se desea probar al analizar la parte real e imaginaria de S.
- **P6.-** Propuesto: Sean $0, z, w \in \mathbb{C}$ tres complejos que forman un triángulo rectángulo en 0 (su ángulo recto está en 0).
 - a) Demuestre que $\bar{z}w + z\bar{w} = 0$
 - b) Pruebe que $|z w|^2 = |z|^2 + |w|^2$
- **P7.-** Propuesto: sea $n \in \mathbb{N}$. Se dice que $\chi : \mathbb{Z}_n \to \mathbb{C}$ es un caracter de $(\mathbb{Z}_n, +)$ si:
 - $|\chi(k)| = 1$ para todo $k \in \mathbb{Z}_n$
 - χ es un homomorfismo de $(\mathbb{Z}_n, +)$ en $(\mathbb{C} \setminus \{0\}, \cdot)$

Para
$$m \in \{0, ..., n-1\}$$
, se define $\phi_m : \mathbb{Z}_n \to \mathbb{C}$ por $\phi_m([k]) = e^{i\frac{2\pi mk}{n}}$

- a) Pruebe que ϕ_m está bien definida y que es un caracter de $(\mathbb{Z}_n,+)$
- b) Use que en \mathbb{Z}_n se tiene que al sumar n-veces 1 da = 0 para probar que si χ es un caracter de $(\mathbb{Z}_n, +)$, entonces $\chi \in \{\phi_0, ..., \phi_{n-1}\}$